2019-05-01

Town of Pelham 20 Pelham Town Square P.O. Box 400 Fonthill, ON LOS 1E0

c/o Adam Keane, P.Eng., Upper Canada Consultants

Subject: 2018 Hydrologic Monitoring Program

Dear Sir:

We are pleased to provide you the 2018 Hydrologic Monitoring Report for the East Fonthill Development.

The report provides background information on the physical setting, details of the work program completed, and a presentation of the monitoring data. Conclusions and recommendations for future monitoring programs are also included in the report. Relevant technical data is appended.

INTRODUCTION

BACKGROUND

Development activities are currently being undertaken at the proposed Village of East Fonthill Phase 1 Development. As part of the development, a storm water management pond was constructed at the northeast corner of the development area to manage storm water runoff. Pond construction occurred in 2015 and was fully constructed by October 2015. The pond has three inlets and one outlet, which discharges to the Twelve Mile Creek watershed. The storm water management pond is located on the southwest corner of Regional Road 20 and Rice Road, in the Town of Pelham, in the Regional Municipality of Niagara, as shown on Figure 1.

As part of the development, hydrologic monitoring of the storm water management pond is required. WSP Canada Limited (WSP) was retained to complete the hydrologic monitoring program, including the field investigation and reporting.

Suite 700 55 King Street St. Catharines, ON, Canada L2R 3H5

T: +1 905 687-1771 F: +1 905 687-1773 wsp.com

OBJECTIVE AND SCOPE

The objective of the hydrologic monitoring program for the Village of East Fonthill Development is to evaluate if the storm water management pond is functioning as designed to ensure no significant adverse impacts upon the receiving watercourse.

The monitoring program included a data collection component, and an analysis and interpretation component. This report provides the results of the hydrologic monitoring program activities that occurred over the period of the 2018 calendar year.

PHYSICAL SETTING

GEOLOGY AND HYDROGEOLOGY

The site is located to the northeast of the Fonthill Kame Complex within the Haldimand Clay Plain physiographic region (Chapman and Putnam, 1984). The fine-grained glaciolacustrine overburden in the area, deposited by pro glacial Lake Warren, varies in thickness between 23 and 35 metres.

Local overburden thickness is mapped as approximately 21 m east of the site (near Highway 406) to 38 m west of the site (near Station Road) (Vos, 1969). The bedrock contact is located at approximately 160 mASL east of the site (near Highway 406) to 145 mASL west of the site (near Station Road) (Feenstra, 1981b). The underlying bedrock is a succession of Palaeozoic beds that dip slightly southward, toward Lake Erie.

Typical quaternary geology of the area (Fenco MacLaren, 1995) includes the following units:

Table 1 Quaternary Geology

GEOLOGIC UNIT	DESCRIPTION

QUATERNARY DEPOSITS	Upper Glaciolacustrine Unit The surficial overburden in the area is mapped as an upper glaciolacustrine unit that is composed of a brown, reddish, and grey silty clay to clayey silt that is massive to thinly-stratified. This unit may be present from ground surface to approximately 10 metres below ground surface.
	Halton Till Underlying the upper glaciolacustrine unit is the Halton Till, a brown to grey, massive to laminated clayey silt with a sand content of less than 20 percent. The till is approximately 10 metres thick.
	Lower Glaciolacustrine Unit Beneath the Halton Till is a lower glaciolacustrine unit of silty clay that is approximately 10 metres thick.
	Lower Till Unit The Lower Till unit consists of sandy silt with lenses of silt, sand, and gravel. The Lower Till unit is approximately 5 metres thick.
BEDROCK	Salina Formation The bedrock consists of inter-bedded dolostones and shales of the Salina Formation.

The upper glaciolacustrine unit, the Halton Till, and the lower glaciolacustrine unit are reportedly fairly uniform and predictable. The sand and gravel lenses within the lower till unit are considered non-uniform and unpredictable since they are laterally variable and discontinuous.

Generally, hydraulic conductivity in overburden soils is low due to the fine-grained nature of the material. Local topography (including existing ditches and swales) and seasonal precipitation strongly influence groundwater flow through fractures in the shallow, weathered overburden.

STORMWATER MANAGEMENT POND

The pond is located on the Rice Road Tributary within the Twelve Mile Creek watershed. The pond has three inlet structures that collect runoff from roadside ditches along the east and west sides of Rice Road (south of Regional Road 20), and from manholes along the south side of Regional Road 20 (west of Rice Road). The pond discharges north through an existing 1.25 m diameter concrete culvert beneath Regional Road 20 into the Rice Road Tributary. On the north side of Regional Road 20, the Rice Road Tributary receives surface water runoff from Regional Road 20. The collected runoff then flows north into the narrowly confined, densely wooded channel of the Rice Road Tributary. The Rice Road Tributary flows north to Twelve Mile Creek, ultimately to Lake Ontario.

MONITORING PROGRAM

The hydrologic monitoring program for the Village of East Fonthill Development includes surface water quality monitoring and surface water flow and temperature monitoring.

The monitoring program will consist of two phases:

- Construction Monitoring monitoring for the duration of the Village of East Fonthill Development construction activities to determine the hydrologic conditions during construction; and,
- Post-Construction Monitoring monitoring for two full years once the Village of East Fonthill Development construction activities are completed to determine if the proposed storm water management strategy is functioning as designed.

This report presents the results of the construction monitoring phase, completed during 2018.

Five surface water monitoring stations were established for the monitoring program, as shown on Figure 1 and described below. As noted above, the north storm water management pond was fully constructed by October 2015. The locations of the stations included below.

- SW1 Inlet to pond, northwest corner of pond
- SW2 Inlet to pond, northeast corner of pond
- SW3 Inlet to pond, east side of pond
- SW4 Outlet from pond to box culvert beneath Regional Road 20 to the Rice Road Tributary
- SW5 Downstream in the Rice Road Tributary, approximately 40 metres north of Regional Road 20

The monitoring program is summarized in Appendix A and discussed in the following sections.

Electronic flow and temperature monitoring in the pond was initiated in spring 2015. Pond construction activities, however, were not completed until October 2015. Additionally, in 2016 the pond was not operating at full capacity due to the time required for the pond to fill. Therefore,

it is interpreted that the monitoring data in 2015 and 2016 may not capture the pond operating as it is intended.

SURFACE WATER QUALITY

The surface water quality monitoring program includes five sampling events throughout the year at stations SW1, SW2, SW3 and SW4. The events are undertaken to correspond with specific weather conditions that include the spring freshet (i.e., snow melt runoff) (approximately March/April), twice during dry periods (April/May and September/October), and twice during storm events (preferably >25 mm of precipitation) (May/June and October/November). The surface water monitoring protocols are presented in Table 3.

The surface water samples are analysed for the following water quality parameters:

- Total Suspended Solids (laboratory)
- pH, conductivity, temperature and dissolved oxygen (field measurement only)

Table 2 Monitoring Protocols and Procedures

SURFACE WATER SAMPLING

Attempts are made to schedule surface water monitoring events to correspond with intended freshet, dry, or wet event monitoring.

Surface water samples at each location are collected prior to flow measurement.

Surface water samples are collected directly into the laboratory provided bottles that do not have preservatives. For bottles with preservatives added, standard grab sampling methods are used and then the water is decanted into laboratory provided bottles with the appropriate preservatives. The sample container is pointed upstream and care is taken to avoid particulate and organic matter in the water.

Sample bottles are marked, labelled, and sealed in the field.

Samples are stored in ice packed coolers, and delivered or couriered to the laboratory at the end of each day, under Chain of Custody procedures.

Field parameters (pH, conductivity, temperature and dissolved oxygen) are measured from a separate beaker of water using calibrated instruments.

When the flows are present, stream flow discharge is calculated based on the cross-sectional area of the stream, and the water velocity.

A cross-sectional profile of the stream is determined by measuring the cross sectional width and depth of the wetted stream at incremental sections. The velocity is measured using an electromagnetic velocity meter by measuring the average velocity of each section.

Field notes including date, weather, time, sampling data, staff, field parameters, visual observations, and number of bottles are marked on the Water Sampling Field Data sheets in the Project Field Book.

SURFACE WATER FLOW AND TEMPERATURE

Manual flow measurements are completed at each surface water station during each monitoring event. Manual flow measurements are done generally following the USGS area-velocity method.

Future monitoring events will include submerged electronic temperature loggers at stations SW1, SW2 and SW3 to record water temperature at 10-minute intervals on a seasonal basis (i.e., during non-freezing conditions), and submerged electronic flow monitoring equipment at stations SW4 and SW5 to measure water level, velocity and temperature at 10-minute intervals on a seasonal basis (i.e., during non-freezing conditions).

MONITORING PROGRAM RESULTS

Collection of surface water quality samples and flow measurements was attempted five times in 2018 to coincide with the following weather events:

- Spring Freshet/Spring Melt event
- Dry events (without precipitation)
- Wet events (with precipitation)

The table below indicates the dates of the monitoring events.

Table 3 Sampling Event Dates

YEAR	SPRING FRESHET	DRY EVENTS (WITHOUT PRECIPITATION)	WET EVENTS (WITH PRECIPITATION)
2018	4 April	8 May 18 September	4 June 1 November

SURFACE WATER QUALITY

Surface water samples were submitted to AGAT Laboratories of Mississauga for analysis TSS. Field parameters pH, conductivity, temperature, and DO were measured at the time of sample collection.

Water quality results are presented in Table B-1. Laboratory certificates of analysis for the current reporting period are included in Appendix B. The results were compared to the Provincial Water Quality Objectives (PWQO), where available.

The 2018 water quality results met the PWQOs with the exception of dissolved oxygen at SW2 and SW4 in June.

Time-concentration graphs of parameter concentrations at the surface monitoring stations are presented in Figure B-1. During 2018, parameter concentrations generally were similar at the inlet stations (SW1, SW2 and SW3) and the outlet station (SW4).

In 2018, the TSS concentrations ranged from less than 10 mg/L to 89 mg/L. It is noted that the TSS concentration at the outlet (SW4) has decreased overall since completion of the pond construction activities.

The following table compares the average TSS concentrations at the inlets and the TSS concentrations at the outlet (SW4).

TSS at the outlet (SW4) was generally lower than at the inlets throughout 2018. With the exception of the spring freshet sampling event, the TSS concentrations at the outlet were less than 80% of that in the inlet.

Table 4 Total Suspended Solids Concentrations

SAMPLING EVENT	AVERAGE CONCENTRATIONS AT INLETS (SW1, SW2, SW3)	TSS CONCENTRATION AT OUTLET (SW4)	TSS AT OUTLET VS INLETS
Freshet	38 mg/L	45 mg/L	120 %
May	13 mg/L	<10 mg/L	77 %
June	41 mg/L	25 mg/L	61 %
September	15 mg/L	<10 mg/L	67 %
November	55 mg/L	12 mg/L	22 %

SURFACE WATER FLOW AND TEMPERATURE

Manual flow measurements were obtained from each surface water station at the time of the sampling events listed in Section 3.1.

Manual flow measurements are presented in Table C-1. Electronic flow measurements at SW4 and SW5 are presented on Figure C-1 and Figure C-2 respectively. Flow rates typically were highest at the pond outlet (SW4) during each event. The flow rates typically corresponded to the type of event; that is, higher flows during the freshet and storm events, and lower flows during the dry period sampling events.

As previously mentioned, pond construction activities in 2015 and the pond not operating at full capacity in 2016 have impacted the monitoring data. For example, high flow rates observed early in 2015 are likely attributed to pumping of water directly to the outlet structure to accommodate construction activities. Additionally, low flow rates observed in 2016 are possibly attributed to the pond not operating at full capacity.

Electronic and manual temperature monitoring is presented on Figure C-3. The data indicates that, in the summer months, the outlet structures are effectively cooling the temperature of the pond water prior to reaching the downstream location (SW5).

It is noted that electronic monitoring of temperature within the pond was not initiated in 2015 due to the ongoing construction of the pond. In 2016, the electronic temperature devices were lost and/or stolen from SW1, SW2 and SW3 and, therefore, only manual temperature data is available at these locations.

CLIMATE DATA

Climate data is included in Appendix D. Table D-1 summarizes the 2018 climate data from the Environment Canada Welland-Pelham climatological station.

Normal annual precipitation for the area is approximately 997.4 mm, based on the 1981-2010 30-Year Normals calculated from Environment Canada climatological station data located in Welland (approximately six kilometres north of the study area).

A total of 894 mm of precipitation was received in 2018 in the area, based on the total precipitation measured at the Environment Canada Welland-Pelham climatological station, indicating that the volume of precipitation received in 2018 was below normal.

2019 MONITORING PROGRAM

The monitoring program should be continued in 2019. The monitoring program is discussed in detail in Section 2 of this report and summarized below in Table 5. The 2019 program will consist of the construction monitoring phase.

Table 6 2019 Monitoring Program

SURFACE WATER	SURFACE WATER OUALITY	SURFACE WATER FLOW MONITORING (INCLUDING TEMPERATURE)					
STATION ID	MONITORING*	MANUAL**	ELECTRONIC***				
SW1	√	\checkmark	Temperature				
SW2	√	\checkmark	Temperature				
SW3	✓	✓	Temperature				
SW4	~	✓	Water level, velocity, temperature				
SW5	n/a	\checkmark	Water level, velocity, temperature				

Notes:

* Frequency – five times per year (weather-based): spring freshet, two dry events and two storm events (preferably >25 mm of precipitation); Parameters – TSS (laboratory), pH/conductivity/temperature/DO (field)

** Frequency - five times per year with sampling events

*** Frequency – continuous electronic measurement at 10-minute intervals during non-freezing conditions (approximately March to November (weather permitting))

CONCLUSIONS AND RECOMMENDATIONS

Based on the findings of the 2018 monitoring program results presented in this report, the following conclusions are provided:

- The 2018 water quality results met the PWQOs with the exception of dissolved oxygen on one occasion.
- TSS concentration at the outlet (SW4) has decreased overall since completion of the pond construction activities and, with the exception of the spring freshet sampling event, the TSS concentrations at the outlet were less than 80% of that in the inlet.
- Flow rates were typically highest at the pond outlet (SW4) during each event. The flow rates corresponded to the type of event; that is, higher flows during the freshet and storm events, and lower flows during the dry events.
- Electronic and manual temperature monitoring indicates that, in the summer months, the outlet structures are effectively cooling the temperature of the pond water prior to reaching the downstream location (SW5).

Based on the findings of the 2018 monitoring program, the following recommendations are provided for consideration:

- The monitoring program should be continued in 2019 as outlined in Section 4 of this report.

Kind regards,

L

Craig Leger, M.Sc., C.E.T. Environment Consultant

Encl. Appendix A: Work Program, Appendix B: SW Chemistry, Appendix C: SW Flows & Temperatures, Appendix D: Climate

WSP ref.: 151-02261-01 200

A WORK PROGRAM

2018 MONITORING PROGRAM

SURFACE WATER	SURFACE WATER QUALITY	SURFACE WATER (INCLUDING	FLOW MONITORING TEMPERATURE)
STATION ID	MONITORING*	MANUAL**	ELECTRONIC***
SW1	✓	√	Temperature
SW2	✓	✓	Temperature
SW3	✓	\checkmark	Temperature
SW4	✓	V	Water level, velocity, temperature
SW5	n/a	V	Water level, velocity, temperature

Notes:

* Frequency – five times per year (weather-based): spring freshet, two dry events and two storm events (preferably >25 mm of precipitation)

Parameters - TSS (laboratory); pH/conductivity/temperature/DO (field)

** Frequency - five times per year with sampling events

*** Frequency – continuous electronic measurement at 10-minute intervals during non-freezing conditions (approximately March to November (weather permitting))

APPENDIX

B SURFACE WATER CHEMISTRY

Table B-1 Surface Water Quality Data East Fonthill Development

_							SI	N1				
Parameter		BWOO	3/12/2015	5/13/2015	6/9/2015	9/30/2015	10/29/2015	3/22/2016	4/26/2016	6/29/2016	10/21/2016	11/11/2016
	Event Type	FWQU	Freshet	Dry	Wet	Dry	Wet	Freshet	Wet	Dry	Wet	Dry
	Event Phase		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
Field Analyses												
pH (unitless)		6.5 - 8.5	7.5	7.6	8.4	7.9	7.8		8.4	8.2	8.2	7.4
Conductivity (µS/cm)			4570	1215	370	195	1781		1869	1514	380	760
Temperature (°C)			0.8	11.6	18.0	16.4	11.4		9.5	22.7	15.1	9.9
Dissolved Oxygen (Cold Wat	er Biota)	>5 to >8*	11.2	11.0	9.5	7.4	6.6		7.5	<mark>4.5</mark>	9.5	8.7
DO temperature-dependent of	riteria calculatio	n*	7.6	6.2	5.5	5.7	6.2		6.4	5.0	5.8	6.4
Appearance			Clear	Clear	Brown, cloudy	Clear	Brown, cloudy	Cloudy	Brown, cloudy	Clear, colourless	Slightly cloudy	Clear
Laboratory Analyses												
Total Suspended Solids			28	31	353	<10	240	<10	46	23	46	4
							ei ei	NO				
Parameter			2/42/204E	E /4 2 /204 E	6/0/204 F	0/20/2045	40/20/2045	2/22/2046	4/26/2046	6/20/2046	40/24/2046	44/44/2046
	Event Type	PWQO	3/12/2015 Eroshot	5/13/2015 Drv	6/9/2015 Wot	9/30/2015	10/29/2015 Wot	3/22/2016 Eroshot	4/20/2016 W/of	0/29/2010	10/21/2016 Wot	11/11/2016 Drv
	Event Phase		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
Field Analyses	Lvent Fnase		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
nH (unitless)		65.95	7 1	7 /	8.2	7 9	8.0	8.5	8.4	Q 1	<u>β</u> /	8.0
Conductivity (uS/cm)		0.5 - 0.5	<u> </u>	1675	<u> </u>	/.0	<u> </u>	1994	0.4	1526	0.4	600
			23	1073	17.9	14.0	11.2	6.0	0.2	1020	14.2	10.5
Dissolved Ovygen (Cold Wet	or Pioto)	> E to > 0*	3.3	10.2	7.5	7.2	6.2	0.9	9.3	23.2	14.3	10.5
Dissolved Oxygen (Cold Wat		>5 10 >6	9.2	0.0	7.5	<u> </u>	6.3	6.9	6.5	5.0	9.4	7.9
DO temperature-dependent d		211	7.3	0.4	5.5	5.6	0.2	0.0	0.5	5.0	5.9	0.3
Appearance			Clear	Clear	slight brown, cloudy	yellowish, clear	slight cloudy	Cloudy	Light brown, cloudy	Clear, colourless	Slightly cloudy	Clear
Laboratory Analyses												
Total Suspended Solids			<10	<10	10	17	84	<10	26	<10	38	9
_							SI	N3				
Developmenter							•					
Parameter			3/12/2015	5/13/2015	6/9/2015	9/30/2015	10/29/2015	3/22/2016	4/26/2016	6/29/2016	10/21/2016	11/11/2016
Parameter	Event Type	PWQO	3/12/2015 Freshet	5/13/2015 Dry	6/9/2015 <i>Wet</i>	9/30/2015 Dry	10/29/2015 <i>Wet</i>	3/22/2016 Freshet	4/26/2016 <i>Wet</i>	6/29/2016 Dry	10/21/2016 <i>Wet</i>	11/11/2016 Dry
	Event Type Event Phase	PWQO	3/12/2015 Freshet Construction	5/13/2015 Dry Construction	6/9/2015 Wet Construction	9/30/2015 Dry Construction	10/29/2015 Wet Construction	3/22/2016 Freshet Construction	4/26/2016 Wet Construction	6/29/2016 Dry Construction	10/21/2016 Wet Construction	11/11/2016 Dry Construction
Field Analyses	Event Type Event Phase	PWQO	3/12/2015 Freshet Construction	5/13/2015 Dry Construction	6/9/2015 Wet Construction	9/30/2015 Dry Construction	10/29/2015 Wet Construction	3/22/2016 Freshet Construction	4/26/2016 Wet Construction	6/29/2016 Dry Construction	10/21/2016 Wet Construction	11/11/2016 Dry Construction
Field Analyses	Event Type Event Phase	PWQO	3/12/2015 Freshet Construction 7.4	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4	9/30/2015 Dry Construction	10/29/2015 <i>Wet</i> Construction 8.0	3/22/2016 Freshet Construction 8.3	4/26/2016 Wet Construction 8.4	6/29/2016 Dry Construction 8.0	10/21/2016 <i>Wet</i> Construction 8.0	11/11/2016 Dry Construction 7.7
Field Analyses pH (unitless) Conductivity (uS/cm)	Event Type Event Phase	PWQO 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269	9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649	3/22/2016 Freshet Construction 8.3 1280	4/26/2016 Wet Construction 8.4 1479	6/29/2016 Dry Construction 8.0 1500	10/21/2016 Wet Construction 8.0 520	11/11/2016 Dry Construction 7.7 600
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C)	Event Type Event Phase	PWQO 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226 0.1	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9	9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8	3/22/2016 Freshet Construction 8.3 1280 5.7	4/26/2016 Wet Construction 8.4 1479 10.2	6/29/2016 Dry Construction 8.0 1500 23.4	10/21/2016 Wet Construction 8.0 520 15.1	11/11/2016 Dry Construction 7.7 600 8.6
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat	Event Type Event Phase	PWQO 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0	9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8 7.1	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2	4/26/2016 Wet Construction 8.4 1479 10.2 12.8	6/29/2016 Dry Construction 8.0 1500 23.4 4.5	10/21/2016 Wet Construction 8.0 520 15.1 6.7	11/11/2016 Dry Construction 7.7 600 8.6 8.1
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of	Event Type Event Phase er Biota)	PWQO 6.5 - 8.5 >5 to >8*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7	5/13/2015 Dry Construction Dry	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4	9/30/2015 Dry Construction Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy	9/30/2015 Dry Construction Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy	9/30/2015 Dry Construction Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Watter DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy	9/30/2015 Dry Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy ≤10	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy	9/30/2015 Dry Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy <10	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless <10	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear 5
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10	5/13/2015 Dry Dry	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158	9/30/2015 Dry Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy <10	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless <10	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear 5
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wath DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* in*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015	5/13/2015 Dry Dry 5/13/2015	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015	9/30/2015 Dry Dry 9/30/2015	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless <10	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet	5/13/2015 Dry Construction Dry 5/13/2015 Dry	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet	9/30/2015 Dry Construction Dry 9/30/2015 Dry	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy <10 N4 3/22/2016 Freshet	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 10/21/2016 Wet	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear 5 5 11/11/2016 Dry
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction	9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless clear, colourless 6/29/2016 Dry Construction	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233 10/21/2016 Wet Construction	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear 5 11/11/2016 Dry Construction
Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter Field Analyses pH (unitless)	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233 10/21/2016 Wet Construction 8.2	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120	5/13/2015 Dry Construction Dry 5/13/2015 Dry Construction 7.7 1631	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy Cloudy 4 3/22/2016 Freshet Construction 8.9 1880	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 24 4/26/2016 Wet Construction 8.3 1308	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2 1530	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233 10/21/2016 Wet Construction 8.2 600	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 11/11/2016 Dry Construction 7.5 560
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Watter DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4	5/13/2015 Dry Construction Dry 5/13/2015 Dry Construction 7.7 1631 11.9	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376 16.2	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy Cloudy 4 3/22/2016 Freshet Construction 8.9 1880 6.7	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2 1530 23.8	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233 10/21/2016 Wet Construction 8.2 600 16.0	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5 560 9.7
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Watt DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter	Event Type Event Phase er Biota) criteria calculatio Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 6.5 - 8.5	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4 11.0	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8 8.2	9/30/2015 Dry Construction	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9 8.2	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy Cloudy 4 3/22/2016 Freshet Construction 8.9 1880 6.7 10.8	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0 12.0	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2 1530 23.8 5.2	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 233 10/21/2016 Wet Construction 8.2 600 16.0 7.9	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5 560 9.7 8.4
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter Dissolved Oxygen (Cold Wat DO temperature-dependent of Do temperature-dependent of Do temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* n* PWQO 6.5 - 8.5 -5 to >8* -5 to >8* -5 to >8*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4 11.0 7.7	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8 8.2 5.5	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376 16.2 3.4 5.7	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9 8.2 6.2	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0 12.0 6.6	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2 1530 23.8 5.2 4.9	10/21/2016 Wet Construction 520 15.1 6.7 5.8 Cloudy brown 233 10/21/2016 Wet Construction 8.2 600 16.0 7.9 5.7	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5 560 9.7 8.4 6.4
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Watter DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter Eield Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Watter DO temperature-dependent of Cold Watter Appearance	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4 11.0 7.7 Clear	5/13/2015 Dry Construction Dry 5/13/2015 Dry Construction 7.7 1631 11.9 10.4 6.2 Clear	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8 8.2 5.5 Cloudy brown	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376 16.2 3.4 5.7 Clear	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9 8.2 6.2 slightly cloudy	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy Cloudy 4 3/22/2016 Freshet Construction 8.9 1880 6.7 10.8 6.8 Cloudy	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0 13.08 8.0 12.0 6.6	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless 6/29/2016 Dry Construction 8.2 1530 23.8 5.2 4.9 Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 Cloudy brown 233 Cloudy brown 8.2 Construction 8.2 600 16.0 7.9 5.7 Slightly cloudy	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5 560 9.7 8.4 6.4 Clear
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter Sector Dissolved Oxygen (Cold Wat DO temperature-dependent of Do temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4 11.0 7.7 Clear	5/13/2015 Dry Construction	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8 8.2 5.5 Cloudy brown	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376 16.2 3.4 5.7 Clear	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9 8.2 6.2 slightly cloudy	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0 12.0 6.6 Light brown, cloudy	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless 6/29/2016 Dry Construction 6/29/2016 Dry Construction 8.2 1530 23.8 5.2 4.9 Clear, colourless	10/21/2016 Wet Construction 520 15.1 6.7 5.8 Cloudy brown 233 Cloudy brown 233 0000000000000000000000000000000000	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear Clear 5 11/11/2016 Dry Construction 7.5 560 9.7 8.4 6.4 Clear
Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids Parameter Sector Dissolved Oxygen (Cold Wat Do temperature-dependent of Sector Appearance Laboratory Analyses PH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Wat DO temperature-dependent of Appearance Laboratory Analyses Total Suspended Solids	Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 -5 to >8* m*	3/12/2015 Freshet Construction 7.4 1226 0.1 9.8 7.7 Clear 10 3/12/2015 Freshet Construction 7.4 3120 0.4 11.0 7.7 Clear 20	5/13/2015 Dry Construction Dry 5/13/2015 Dry Construction 7.7 1631 11.9 10.4 6.2 Clear	6/9/2015 Wet Construction 8.4 269 18.9 8.0 5.4 slight brown, cloudy 158 6/9/2015 Wet Construction 8.4 1626 17.8 8.2 5.5 Cloudy brown	9/30/2015 Dry Construction Dry 9/30/2015 Dry Construction 7.7 376 16.2 3.4 5.7 Clear	10/29/2015 Wet Construction 8.0 649 10.8 7.1 6.3 slight cloudy 40 10/29/2015 Wet Construction 7.9 859 11.9 8.2 6.2 slightly cloudy 103	3/22/2016 Freshet Construction 8.3 1280 5.7 12.2 6.9 Cloudy 	4/26/2016 Wet Construction 8.4 1479 10.2 12.8 6.4 Light brown, cloudy 24 4/26/2016 Wet Construction 8.3 1308 8.0 12.0 6.6 Light brown, cloudy	6/29/2016 Dry Construction 8.0 1500 23.4 4.5 5.0 Clear, colourless Clear, colourless 6/29/2016 Dry Construction 8.2 1530 23.8 5.2 4.9 Clear, colourless	10/21/2016 Wet Construction 8.0 520 15.1 6.7 5.8 Cloudy brown 233 10/21/2016 Wet Construction 8.2 600 16.0 7.9 5.7 Slightly cloudy	11/11/2016 Dry Construction 7.7 600 8.6 8.1 6.6 Clear 5 11/11/2016 Dry Construction 7.5 560 9.7 8.4 6.4 Clear

 $\label{eq:Notes:} \begin{array}{l} \mbox{Notes:} \\ \mbox{All parameters are mg/L unless otherwise indicated.} \\ \mbox{PWQO - Provincial Water Quality Objectives (1999)} \\ \mbox{Shading indicates parameter exceeds PWQO} \\ \mbox{- Cold Water Biota Criteria relative to temperature:} \\ \mbox{y = 7.7259e} \\ \mbox{, y=DO criteria x=temperature} \end{array}$

Table B-1 Surface Water Quality Data East Fonthill Development

_						SI	N1				
Parameter	DWOO	3/28/2017	5/3/2017	6/6/2017	9/22/2017	12/5/2017	4/4/2018	5/8/2018	6/4/2018	9/18/2018	11/1/2018
Event Type	PWQO	Freshet	Wet	Dry	Wet	Dry	Freshet	Dry	Wet	Dry	Wet
Event Phase		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
Field Analyses											
pH (unitless)	6.5 - 8.5	8.3	8.1	7.8	7.4	7.7	7.7	7.7	7.9	7.8	7.9
Conductivity (µS/cm)		1610	980	890	490	283	1529	1694	1544	765	459
Temperature (°C)		10.0	11.9	17.5	23.8	8.1	5.1	15.0	19.4	24.1	8.1
Dissolved Oxygen (Cold Water Biota)	>5 to >8*	11.8	14.8	8.5	7.9	10.0	11.1	9.0	6.8	7.4	8.9
DO temperature-dependent criteria calculation	n*	6.4	6.2	5.5	4.9	6.6	7.0	5.8	5.3	4.9	6.6
Appearance		Slightly cloudy	Cloudy light brown	Clear	Clear	Cloudy light brown	Clear, slightly yellow	Clear	Clear, yellowish	Clear	Cloudy
Laboratory Analyses											
Total Suspended Solids		30	32	<10	16	78	57	<10	18	<10	61
						SI	NO				
Parameter		3/28/2017	5/3/2017	6/6/2017	0/22/2017	12/5/2017	A/A/2018	5/8/2018	6///2018	0/18/2018	11/1/2018
Event Type	PWQO	Freshet	5/3/2017 Wet	Drv	9/22/2017 Wet	Dry	Freshet	5/6/2018 Drv	0/4/2018 Wet	9/10/2018 Drv	Wet
Event Type		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
Field Analyses		Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction	Construction
nH (unitless)	65-85	8.4	8.2	83	7.6	7.6	7.4	7.5	77	7.6	7.9
Conductivity (uS/cm)	0.0 - 0.0	1560	700	831	490	168	1036	1478	1618	983	618
Temperature (°C)		10.1	12.6	17.6	22.9	8.0	4 9	16.3	20.4	24.3	82
Dissolved Oxygen (Cold Water Biota)	>5 to >8*	10.1	16.6	9.0	83	10.0	10.8	6.2	<u>4</u> 2	5.9	8.8
DO temperature-dependent criteria calculatio	20 10 20	6.4	6.1	5.5	5.0	6.6	7.0	5.7	5.2	4 9	6.6
Bo temperature dependent entena calculate	///	0.4	0.1	0.0	0.0	0.0	Clear alightly	0.7	Clear alightly	4.0	0.0
Appearance		Clear	Cloudy light brown	Clear	Clear	Cloudy light brown	yellow	Clear	yellow	Clear	Cloudy
Laboratory Analyses											
Total Suspended Solids		27	34	<10	<10	60	30	19	38	<10	89
-						S	N3				
Parameter		3/28/2017	5/3/2017	6/6/2017	9/22/2017	SV 12/5/2017	N3 4/4/2018	5/8/2018	6/4/2018	9/18/2018	11/1/2018
Parameter Event Type	PWQO	3/28/2017 Freshet	5/3/2017 Wet	6/6/2017 Dry	9/22/2017 Wet	SN 12/5/2017 Dry	N3 4/4/2018 Freshet	5/8/2018 Dry	6/4/2018 Wet	9/18/2018 Dry	11/1/2018 Wet
Parameter Event Type Event Phase	PWQO	3/28/2017 Freshet Construction	5/3/2017 Wet Construction	6/6/2017 Dry Construction	9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction	N3 4/4/2018 Freshet Construction	5/8/2018 Dry Construction	6/4/2018 Wet Construction	9/18/2018 Dry Construction	11/1/2018 Wet
Parameter Event Type Event Phase Field Analyses	PWQO	3/28/2017 Freshet Construction	5/3/2017 Wet Construction	6/6/2017 Dry Construction	9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction	N3 4/4/2018 Freshet Construction	5/8/2018 Dry Construction	6/4/2018 Wet Construction	9/18/2018 Dry Construction	11/1/2018 Wet Construction
Parameter Event Type Event Phase Field Analyses pH (unitless)	PWQO	3/28/2017 Freshet Construction 8.4	5/3/2017 Wet Construction 8.1	6/6/2017 Dry Construction 8.3	9/22/2017 Wet Construction 7.8	SI 12/5/2017 Dry Construction 7.2	V3 4/4/2018 Freshet Construction 7.3	5/8/2018 Dry Construction 7.6	6/4/2018 Wet Construction 7.5	9/18/2018 Dry Construction 7.6	11/1/2018 Wet Construction 7.8
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm)	PWQO 6.5 - 8.5	3/28/2017 Freshet Construction 8.4 780	5/3/2017 Wet Construction 8.1 610	6/6/2017 Dry Construction 8.3 839	9/22/2017 Wet Construction 7.8 480	SV 12/5/2017 Dry Construction 7.2 418	N3 4/4/2018 Freshet Construction 7.3 722	5/8/2018 Dry Construction 7.6 1485	6/4/2018 Wet Construction 7.5 1612	9/18/2018 Dry Construction 7.6 1081	11/1/2018 Wet Construction 7.8 529
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C)	PWQO 6.5 - 8.5	3/28/2017 Freshet Construction 8.4 780 9.1	5/3/2017 Wet Construction 8.1 610 11.2	6/6/2017 Dry Construction 8.3 839 19.6	9/22/2017 Wet Construction 7.8 480 21.8	SV 12/5/2017 Dry Construction 7.2 418 7.0	V3 4/4/2018 Freshet Construction 7.3 722 4.6	5/8/2018 Dry Construction 7.6 1485 16.2	6/4/2018 Wet Construction 7.5 1612 20.0	9/18/2018 Dry Construction 7.6 1081 23.8	11/1/2018 Wet Construction 7.8 529 8.1
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota)	PWQO 6.5 - 8.5 >5 to >8*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4	5/3/2017 Wet Construction 8.1 610 11.2 15.7	6/6/2017 Dry Construction 8.3 839 19.6 8.6	9/22/2017 Wet Construction 7.8 480 21.8 8.2	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0	N3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9	5/8/2018 Dry Construction 7.6 1485 16.2 7.6	6/4/2018 Wet Construction 7.5 1612 20.0 5.0	9/18/2018 Dry Construction 7.6 1081 23.8 6.1	11/1/2018 Wet Construction 7.8 529 8.1 8.2
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance	PWQO 6.5 - 8.5 >5 to >8* on*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculatio Appearance Laboratory Analyses Total Suspended Solids	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids	PWQO 6.5 - 8.5 >5 to >8* on*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear <10	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear <10	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear <10	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear <10	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter	PWQO 6.5 - 8.5 >5 to >8* nn*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear <10 3/28/2017	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear <10	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10 5/8/2018	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear <10 3/28/2017 Freshet	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear <10 	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017 Dry	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10 5/8/2018 Dry	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Phase	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear 	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear <10 	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10 <10 5/8/2018 Dry Construction	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction
Event Type Event Phase Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Phase Field Analyses	PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear 	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear <10 6/6/2017 Dry Construction	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10 5/8/2018 Dry Construction	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Type Field Analyses pH (unitless)	PWQO 6.5 - 8.5 >5 to >8* m* PWQO	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear 	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 40 6/6/2017 Dry Construction	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear <10 5/8/2018 Dry Construction	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Type Field Analyses pH (unitless) Conductivity (µS/cm)	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 40 6/6/2017 Dry Construction 7.7 908	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction Construction	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 40 5/8/2018 Dry Construction 7.8 1770	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction 7.6 1728	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction 7.5 1045	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction 7.8 396
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Type Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C)	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050 7.4	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680 11.3	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 40 6/6/2017 Dry Construction 7.7 908 18.6	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction 7.6 1009 5.6	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551 5.7	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 40 5/8/2018 Dry Construction 7.8 1770 13.5	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction 7.6 1728 19.7	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction 7.5 1045 20.7	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction 7.8 396 8.0
Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota)	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 6.5 - 8.5	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050 7.4 12.1	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680 11.3 14.0	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 40 6/6/2017 Dry Construction 7.7 908 18.6 9.2	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 6.8 Cloudy light brown 38 SV 12/5/2017 Dry Construction 7.6 1009 5.6 10.1	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551 5.7 11.1	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 40 5/8/2018 Dry Construction 7.8 1770 13.5 8.6	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction 7.6 1728 19.7 4.3	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction 7.5 1045 20.7 7.4	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 11/1/2018 Wet Construction 7.8 396 8.0 8.0
Event Type Event Phase Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (μS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 -5 to >8* -5 to >8*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050 7.4 12.1 6.7	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680 11.3 14.0 6.2	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 40 6/6/2017 Dry Construction 7.7 908 18.6 9.2 5.4	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 Cloudy light brown 38 Cloudy light brown Construction 7.6 1009 5.6 10.1 6.9	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551 5.7 11.1 6.9	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 40 5/8/2018 Dry Construction 7.8 1770 13.5 8.6 6.0	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 68 6/4/2018 Wet Construction 7.6 1728 19.7 4.3 5.3	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction 7.5 1045 20.7 7.4 5.2	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 14 14 11/1/2018 Wet Construction 7.8 396 8.0 8.0 8.0 6.6
Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Type Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 -5 to >8* -5 to >8*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050 7.4 12.1 6.7 Cloudy	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680 11.3 14.0 6.2 Slightly cloudy brown	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 4 6/6/2017 Dry Construction 7.7 908 18.6 9.2 5.4 Clear	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown Cloudy light brown 7.6 1009 5.6 10.1 6.9 Cloudy light brown	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551 5.7 11.1 6.9 Clear, slightly yellow	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 5/8/2018 Dry Construction 7.8 1770 13.5 8.6 6.0 Clear	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction 7.6 1728 19.7 4.3 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 Dry Construction 9/18/2018 07.5 1045 20.7 7.4 5.2 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 11/1/2018 Wet Construction 7.8 396 8.0 8.0 8.0 6.6
Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses Total Suspended Solids Parameter Event Type Event Phase Field Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses pH (unitless) Conductivity (µS/cm) Temperature (°C) Dissolved Oxygen (Cold Water Biota) DO temperature-dependent criteria calculation Appearance Laboratory Analyses	PWQO 6.5 - 8.5 >5 to >8* m* PWQO 6.5 - 8.5 >5 to >8* m*	3/28/2017 Freshet Construction 8.4 780 9.1 13.4 6.5 Clear Clear 3/28/2017 Freshet Construction 8.2 2050 7.4 12.1 6.7 Cloudy	5/3/2017 Wet Construction 8.1 610 11.2 15.7 6.2 Slightly cloudy 16 5/3/2017 Wet Construction 7.8 680 11.3 14.0 6.2 Slightly cloudy brown	6/6/2017 Dry Construction 8.3 839 19.6 8.6 5.3 Clear Clear 4 6/6/2017 Dry Construction 7.7 908 18.6 9.2 5.4 Clear	9/22/2017 Wet Construction 7.8 480 21.8 8.2 5.1 Clear 11 9/22/2017 Wet Construction	SV 12/5/2017 Dry Construction 7.2 418 7.0 9.0 6.8 Cloudy light brown 38 Cloudy light brown 38 Cloudy light brown 7.6 1009 5.6 10.1 6.9 Cloudy light brown	V3 4/4/2018 Freshet Construction 7.3 722 4.6 11.9 7.1 Clear, slightly yellow 26 V4 4/4/2018 Freshet Construction 7.9 1551 5.7 11.1 6.9 Clear, slightly yellow	5/8/2018 Dry Construction 7.6 1485 16.2 7.6 5.7 Clear Clear 40 5/8/2018 Dry Construction 7.8 1770 13.5 8.6 6.0 Clear	6/4/2018 Wet Construction 7.5 1612 20.0 5.0 5.3 Clear, slightly yellow 68 6/4/2018 Wet Construction 7.6 1728 19.7 4.3 5.3 Clear, slightly yellow	9/18/2018 Dry Construction 7.6 1081 23.8 6.1 4.9 Clear 25 9/18/2018 0 9/18/2018 0 7.5 1045 20.7 7.4 5.2 Clear	11/1/2018 Wet Construction 7.8 529 8.1 8.2 6.6 Slightly cloudy 11/1/2018 Wet Construction 7.8 396 8.0 8.0 6.6 Clear

\\SD

Field pH

Field Conductivity (µS/cm)

ig/L)

CLIENT NAME: WSP CANADA INC. 55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5 (905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: 151-02661-00

AGAT WORK ORDER: 18T326648

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: Apr 13, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18T326648 PROJECT: 151-02661-00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:Fonthill East (Fonthill Sites)

ATTENTION TO: Craig Leger

SAMPLED BY:BC

TSS (Water)								
DATE RECEIVED: 2018-04-05								DATE REPORTED: 2018-04-13
		SAMPLE DES	CRIPTION:	SW1	SW2	SW3	SW4	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2018-04-04	2018-04-04	2018-04-04	2018-04-04	
Parameter	Unit	G/S	RDL	9166604	9166605	9166606	9166607	
Total Suspended Solids	mg/L		10	57	30	26	45	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 151-02661-00

SAMPLING SITE:Fonthill East (Fonthill Sites)

AGAT WORK ORDER: 18T326648

ATTENTION TO: Craig Leger

SAMPLED BY:BC

				Wate	er Ar	nalys	IS								
RPT Date: Apr 13, 2018			C	UPLICAT	E		REFEREN	ICE MA	TERIAL	METHOD	BLAN	SPIKE	MAT	RIX SPII	KE
PARAMETER	Batch	Batch Sample Dup #1 Dup #2 RPD Blank Measured Lim		ptable nits	Recoverv	Acceptable Limits		Recovery	Acceptable Limits						
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
TSS (Water)															
Total Suspended Solids	9167950		<10	<10	NA	< 10	98%	80%	120%						

-

- -

. . .

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the Reporting Limit (RL), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Certified By:

Page 3 of 5

Method Summary

CLIENT NAME: WSP CANADA INC.		AGAT WORK ORDER: 18T326648						
PROJECT: 151-02661-00		ATTENTION TO: Craig Leger						
SAMPLING SITE:Fonthill East (Fonthill	Sites)	SAMPLED BY:BC						
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis								
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE					

CLIENT NAME: WSP CANADA INC. 55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5 (905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: 151-02661-00

AGAT WORK ORDER: 18T337487

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: May 18, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*NOTES</u>	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18T337487 PROJECT: 151-02661-00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:Fonthill East (Fonthill Sites)

ATTENTION TO: Craig Leger

SAMPLED BY:CS/DBM

TSS (Water)								
DATE RECEIVED: 2018-05-09								DATE REPORTED: 2018-05-18
		SAMPLE DES	CRIPTION:	SW1	SW2	SW3	SW4	
		SAM	IPLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2018-05-08	2018-05-08	2018-05-08	2018-05-08	
Parameter	Unit	G/S	RDL	9231640	9231641	9231642	9231643	
Total Suspended Solids	mg/L		10	<10	19	<10	<10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Inis Verastegui

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 151-02661-00

SAMPLING SITE: Fonthill East (Fonthill Sites)

AGAT WORK ORDER: 18T337487

ATTENTION TO: Craig Leger

SAMPLED BY:CS/DBM

Water Analysis

						,									
RPT Date: May 18, 2018			C	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	p #1 Dup #2	RPD	Method Blank	Measured	Acceptable Measured Limits		Recovery	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits
		Id					value	Lower	Upper		Lower	Upper		Lower	Upper
TSS (Water) Total Suspended Solids	9234875		<10	<10	NA	< 10	102%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 5

🧑 (a G (a 1	Laboratories	5	5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122					
	Method S	Summarv	http://www.agatlabs.com					
CLIENT NAME: WSP CANADA INC.		AGAT WORK O	AGAT WORK ORDER: 18T337487					
PROJECT: 151-02661-00		ATTENTION TO	ATTENTION TO: Craig Leger					
SAMPLING SITE: Fonthill East (Fonthill S	Sites)	SAMPLED BY:0	CS/DBM					
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis	-							
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE					

CLIENT NAME: WSP CANADA INC. 55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5 (905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: 151-02661-00

AGAT WORK ORDER: 18T347030

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Jun 13, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18T347030 PROJECT: 151-02661-00 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE: Fonthill, ON

ATTENTION TO: Craig Leger

SAMPLED BY:CS

TSS (Water)									
DATE RECEIVED: 2018-06-05								DATE REPORTED: 2018-06-13	
		SAMPLE DES	CRIPTION:	SW1	SW2	SW3	SW4		
		SAM	PLE TYPE:	Water	Water	Water	Water		
		DATE	SAMPLED:	2018-06-04	2018-06-04	2018-06-04	2018-06-04		
Parameter	Unit	G/S	RDL	9300724	9300725	9300726	9300727		
Total Suspended Solids	mg/L		10	18	38	68	25		

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Nivine Basily

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: 151-02661-00

SAMPLING SITE: Fonthill, ON

AGAT WORK ORDER: 18T347030

ATTENTION TO: Craig Leger

SAMPLED BY:CS

Water Analysis

RPT Date: Jun 13, 2018 DUPLICATE					REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lin	ptable nits	Recoverv	Acce Lir	Acceptable Limits		Acceptable Limits	
		la					Value	Lower	Upper		Lower	Upper		Lower	Upper
TSS (Water)															

Total Suspended Solids 9298666 <10 <10 NA < 10 98% 80% 120%

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Nivine Basily

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

CLIENT NAME: WSP CANADA INC.		AGAT WORK ORDER: 18T347030						
PROJECT: 151-02661-00	ATTENTION TO: (Craig Leger						
SAMPLING SITE:Fonthill, ON	SAMPLED BY:CS							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE					
Water Analysis	•							
Total Suspended Solids	INOR-93-6028	SM 2540 D	BALANCE					

CLIENT NAME: WSP CANADA INC. 55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5 (905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: Fonthill East 151-02661-02

AGAT WORK ORDER: 18H387561

WATER ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer

DATE REPORTED: Sep 26, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*NOTES	

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18H387561 PROJECT: Fonthill East 151-02661-02 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.aqatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Craig Leger

SAMPLED BY:

					TSS	5		
DATE RECEIVED: 2018-09-20								DATE REPORTED: 2018-09-26
		SAMPLE DES	CRIPTION:	SW1	SW2	SW3	SW4	
		SAM	PLE TYPE:	Water	Water	Water	Water	
		DATE	SAMPLED:	2018-09-18	2018-09-18	2018-09-18	2018-09-18	
Parameter	Unit	G/S	RDL	9561412	9561415	9561418	9561419	
Total Suspended Solids	mg/L		10	<10	<10	25	<10	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Iris Verastegui

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: Fonthill East 151-02661-02

AGAT WORK ORDER: 18H387561

ATTENTION TO: Craig Leger

SAMPLING SITE:

SAMPLED BY:

				Wat	er Ar	nalys	is								
RPT Date: Sep 26, 2018			C	DUPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	< SPIKE	MAT	RIX SP	IKE
PARAMETER	Batch	Sample	ble Dup #1 Dup #2 RPD Method Blank Measur		Measured	Acce Lir	Acceptable Limits Recover		Acceptable Limits Recover		Recovery	Acceptable Limits			
		Ia					value	Lower	Upper		Lower	Upper		Lower	Upper
TSS Total Suspended Solids	9566684		<10	<10	NA	< 10	98%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Inis Verastegui

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 3 of 5

Method Summary

LIENT NAME: WSP CANADA INC. AGAT WORK ORDER: 18H387561									
PROJECT: Fonthill East 151-02661-02	61-02 ATTENTION TO: Craig Leger								
SAMPLING SITE:	SAMPLED BY:								
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis									
Total Suspended Solids	INOR-93-6028	SM 2540 D BALANCE							

CLIENT NAME: WSP CANADA INC. 55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5 (905) 687-1771

ATTENTION TO: Leigh Davis

PROJECT: East Fonthill 151-02661-01

AGAT WORK ORDER: 18H404503

WATER ANALYSIS REVIEWED BY: Rocio Morales, Inorganics Lab Supervisor

DATE REPORTED: Nov 09, 2018

PAGES (INCLUDING COVER): 5

VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA) Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 5

Results relate only to the items tested and to all the items tested All reportable information as specified by ISO 17025:2005 is available from AGAT Laboratories upon request

Certificate of Analysis

AGAT WORK ORDER: 18H404503 PROJECT: East Fonthill 151-02661-01 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Leigh Davis

SAMPLED BY:

	TSS												
DATE RECEIVED: 2018-11-01								DATE REPORTED: 2018-11-09					
		SAMPLE DES	CRIPTION:	SW1	SW2	SW3	SW4						
		SAM	PLE TYPE:	Water	Water	Water	Water						
		DATE	SAMPLED:	2018-11-01	2018-11-01	2018-11-01	2018-11-01						
Parameter	Unit	G/S	RDL	9668441	9668442	9668443	9668444						
Total Suspended Solids	mg/L		10	61	89	14	12						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

Quality Assurance

CLIENT NAME: WSP CANADA INC.

PROJECT: East Fonthill 151-02661-01

AGAT WORK ORDER: 18H404503

ATTENTION TO: Leigh Davis

SAMPLING SITE:

SAMPLED BY:

				Wat	er Ar	nalys	is								
RPT Date: Nov 09, 2018			DUPLICATE				REFERENCE MATERIAL			. METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acce Lir	ptable nits	Recovery	Acce Lir	ptable nits	Recovery	Acce Lin	ptable nits
		Ia					value	Lower	Upper]	Lower	Upper		Lower	Upper
TSS Total Suspended Solids	9668441 9	9668441	61	64	4.8%	< 10	98%	80%	120%	NA			NA		

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Page 3 of 5

AGAT QUALITY ASSURANCE REPORT (V1)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Method Summary

SAMPLING SITE:		SAMPLED BY:							
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE						
Water Analysis			-						

APPENDIX

C SURFACE WATER FLOWS AND TEMPERATURE

vsp

Table C-1 Surface Water Manual Flow Measurements East Fonthill Development

		SW1	SW2	SW3	SW4	SW5
Date	Event	Discharge	Discharge	Discharge	Discharge	Discharge
(dd/mm/yyyy)	Туре	Rate	Rate	Rate	Rate	Rate
		(L/sec)	(L/sec)	(L/sec)	(L/sec)	(L/sec)
3/12/2015	Freshet	2.0	1.0	2.6	14.5	3.5
5/13/2015	Dry	0.02	0.1	Dry	0.2	0.4
6/9/2015	Wet	10.4	5.6	13.8	43.9	5.3
9/30/2015	Dry	No Flow	No Flow	Dry	&	1.5
10/29/2015	Wet	Flooded	Flooded	0.05	27.5	19.4
3/22/2016	Freshet	No Flow	No Flow	No Flow	8.9	4.6
4/26/2016	Wet	No Flow	No Flow	No Flow	No Flow	7.4
6/29/2016	Dry	No Flow	No Flow	No Flow	No Flow	0.2
9/1/2016	Dry	No Flow				
10/21/2016	Wet	Flooded	Flooded	Flooded	12.8	19.9
3/28/2017	Freshet	14.3	1.5	0.7	24.2	
5/3/2017	Dry	1.9	0.6	2.8	5.4	5.7
6/6/2017	Wet	3.4	0.3	0.3	1.9	0.8
9/22/2017	Dry	0.0	0.0	0.0	Dry	Dry
12/5/2017	Wet	5.4	2.7	2.8	21.2	22.2
4/4/2018	Freshet	3.2	4.8	3.5	24.9	23.4
5/8/2018	Dry	0.8	0.8	0.3	2.9	0.5
6/4/2018	Wet	3.6	0.2	0.2	2.5	2.3
9/18/2018	Dry	0.2	Dry	0.1	0.2	0.4
11/1/2018	Wet	4.1	0.3	0.3	9.0	5.0

Notes:

Event type indicates weather conditions. Dry indicates no precipitation. Wet indicates precipitation.

& - Construction around station prevented flow measurement

Figure C-1 - SW4 Flow Monitoring and Precipitation East Fonthill Development

Figure C-2 - SW5 Flow Monitoring and Precipitation East Fonthill Development

wsp

APPENDIX

D CLIMATE

Table D-1Environment Canada Climate Data - Temperature and PrecipitationEast Fonthill Development

Data Source: Environment Canada National Climate Data and Information Archive

Station Name Welland-Pelham Province Ontario Latitude 42.97 Longitude -79.33 Elevation 178 Climate Identi139449 WMO Identifie 71752 TC Identifier TWL

Legend

Legena	
[Empty]	No Data Available
М	Missing
E	Estimated
А	Accumulated
С	Precipitation Occurred; Amount Uncertain
L	Precipitation May or May Not Have Occurred
F	Accumulated and Estimated
Ν	Temperature Missing but Known to be > 0
Y	Temperature Missing but Known to be < 0
S	More Than One Occurrence
Т	Trace
*	Data for this day has undergone only preliminary quality checking
ىلە بلە	

** Partner data that is not subject to review by the National Climate Archives.

Date/Time	Maximum Temperatu re	Minimum Temperatu re	Mean Temperatu re	Heat Degree Days	Cool Degree Days	Total Rain	Total Snow	Total Precipitati on	Snow on Ground	Direction of Maximum Gust	Speed of Maximum Gust
	(°C)	(°C)	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
1/1/2018	-10.6	-26.1	-18.4	36.4		0		0	7		<31
1/2/2018	-6.3	-12.7	-9.5	27.5		0		0	7		<31
1/3/2018	-5.6	-9.7	-7.7	25.7		0		0.7	5		<31
1/4/2018	-9.5	-17.3	-13.4	31.4		0		0.2	4		<31
1/5/2018	-15.7	-20.8	-18.3	36.3		0		0	5		<31
1/6/2018	-15.7	-24	-19.9	37.9		0		0	5		<31
1/7/2018	0.6	-25.2	-12.3	30.3		0		0	5		<31
1/8/2018	1.4	-1	0.2	17.8		0		5.1	5		<31
1/9/2018	1	-10.6	-4.8	22.8		0		0	5		<31
1/10/2018	7.4	-12	-2.3	20.3		0		0.8	5		<31
1/11/2018	14	6.8	10.4	7.6		0		7.9	1		<31
1/12/2018	12.5	-10	1.3	16.7		0		13.8	2		<31
1/13/2018	-10	-16.8	-13.4	31.4		0		0	8		<31
1/14/2018	-7.6	-19.6	-13.6	31.6		0		0	5		<31
1/15/2018	-5.8	-13.2	-9.5	27.5		0		0.9	6		<31
1/16/2018	-3.6	-9.8	-6.7	24.7		0		0.7	8		<31
1/17/2018	-6.2	-10.1	-8.2	26.2		0		0.4	10		<31
1/18/2018	-2.4	-7.7	-5.1	23.1		0		0	6		<31
1/19/2018	3	-2.6	0.2	17.8		0		0	5		<31
1/20/2018	3.2	-1.4	0.9	17.1		0		0	5		<31
1/21/2018	3.5	-3.1	0.2	17.8		0		0	3		<31
1/22/2018	7.3	1.7	4.5	13.5		0		6.5	1		<31
1/23/2018	10.1	-3.2	3.5	14.5		0		3.8	0		<31
1/24/2018	-3.1	-7.7	-5.4	23.4		0		0			<31
1/25/2018	-2.5	-11.1	-6.8	24.8		0		0	2		<31
1/26/2018	7.2	-5.8	0.7	17.3		0		0	2		<31
1/27/2018	8.3	-0.7	3.8	14.2		0		1.4	1		<31
1/28/2018	6.5	-2.8	1.9	16.1		0		0.2	1		<31
1/29/2018	0.8	-5.3	-2.3	20.3		0		6.1	2		<31
1/30/2018	-5.3	-21.6	-13.5	31.5		0		1.4	15		<31
1/31/2018	2.4	-21.3	-9.5	27.5		0		0	12		<31

Date/Time	Maximum Temperatu re	Minimum Temperatu re	Mean Temperatu re	Heat Degree Days	Cool Degree Days	Total Rain	Total Snow	Total Precipitati on	Snow on Ground	Direction of Maximum Gust	Speed of Maximum Gust
	(°C)	(°C)	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
2/1/2018	4	-9.3	-2.7	20.7	0			0	10		<31
2/2/2018	-8.4	-12	-10.2	28.2	0			0	7		<31
2/3/2018	0	-10.2	-5.1	23.1	0			0	7		<31
2/4/2018	2.5	-8.3	-2.9	20.9	0			8.5	7		<31
2/5/2018	-6.4	-12.7	-9.6	27.6	0			0.2	9		<31
2/6/2018	-5	-14.6	-9.8	27.8	0			1.5	10		<31
2/7/2018	-4.4	-15.4	-9.9	27.9	0			4.9	10		<31
2/8/2018	-7.1	-19.1	-13.1	31.1	0			0	14		<31
2/9/2018	-4.8	-9.9	-7.4	25.4	0			6.2	13		<31
2/10/2018	-1.6	-5	-3.3	21.3	0			8	20		<31
2/11/2018	2.4	-3.6	-0.6	18.6	0			3.5	23		<31
2/12/2018	-2.4	-14	-8.2	26.2	0			0.2	18		<31
2/13/2018	-1.8	-18.4	-10.1	28.1	0			0	18		<31
2/14/2018	4.5	-4	0.3	17.7	· 0			0	18		<31
2/15/2018	8.1	1.8	5	13	0			1.1	11		<31
2/16/2018	3.7	-7.5	-1.9	19.9	0			0.2	3		<31
2/17/2018	-1.5	-7.9	-4.7	22.7	0			0	3		<31
2/18/2018	1.6	-3.3	-0.9	18.9	0			0	2		<31
2/19/2018	13.8	-0.8	6.5	11.5	0			16.7	2		<31
2/20/2018	17.9	8.4	13.2	4.8	0			7.6	2		<31
2/21/2018	17.9	0.1	9	9	0			4.6	1		<31
2/22/2018	3.7	-1.6	1.1	16.9	0			0.2	1		<31
2/23/2018	8.7	0.4	4.6	13.4	0			5.7	0		<31
2/24/2018	5.4	1.5	3.5	14.5	0			0	0		<31
2/25/2018	11.7	1.5	6.6	11.4	0			5.4	1		<31
2/26/2018	6.7	-1.3	2.7	15.3	0			0.2	0		<31
2/27/2018	10.4	-0.4	5	13	0			0	0		<31
2/28/2018	12.6	0.5	6.6	11.4	0			0			<31
3/1/2018	3	-0.6	1.2	16.8	0			4.8			<31
3/2/2018	0.1	-3.1	-1.5	19.5	0			9	9		<31
3/3/2018	1.9	-7.7	-2.9	20.9	0			0	6		<31
3/4/2018	1.2	-4.2	-1.5	19.5	0			0	5		<31
3/5/2018	1.4	-9.4	-4	22	0			0	4		<31
3/6/2018	1.4	-5.4	-2	20	0			0	2		<31
3/7/2018	3.4	-4.3	-0.5	18.5	0			0.4	1		<31
3/8/2018	-1	-5.9	-3.5	21.5	0			0.2	0		<31
3/9/2018	1.9	-4.1	-1.1	19.1	0			0.2	0		<31
3/10/2018	1.3	-5.6	-2.2	20.2	0			0	0		<31
3/11/2018	0.8	-7.8	-3.5	21.5	0			0.2	0		<31
3/12/2018	0.3	-3.8	-1.8	19.8	0			0	0		<31
3/13/2018	1.2	-6.5	-2.7	20.7	0			1.6	0		<31
3/14/2018	-0.7	-4.7	-2.7	20.7	0			1.3	6		<31
3/15/2018	2.6	-7.2	-2.3	20.3	0			0	4		<31
3/16/2018	-1.2	-6.3	-3.8	21.8	0			0	1		<31
3/17/2018	4	-5.4	-0.7	18.7	0			0	1		<31
3/18/2018	6.6	-7.3	-0.4	18.4	0			0	0		<31
3/19/2018	0.3	-5.6	-2.7	20.7	0			0	0		<31
3/20/2018	2.7	-6.2	-1.8	19.8	0			0	0		<31
3/21/2018	2.5	-3.1	-0.3	18.3	0			0	1		<31
3/22/2018	5.2	-3.5	0.9	17.1	0			0			<31
3/23/2018	4.7	-5.2	-0.3	18.3	0			0	0		<31
3/24/2018	1.7	-4.6	-1.5	19.5	0			0	0		<31
3/25/2018	4.8	-6.4	-0.8	18.8	0			0	0		<31
3/26/2018	10.6	-5.1	2.8	15.2	0			0	0		<31
3/27/2018	5.9	2.6	4.3	13.7	0			3.2			<31
3/28/2018		3.7							0		<31
3/29/2018	6.9	3.8	5.4	12.6	0			20.4			<31
3/30/2018	6.4	-2.5	2	16	0			0	0		<31
3/31/2018	9.3	-2.5	3.4	14.6	0			4.9	0		<31

H:\Projects\2015\151-02661-01 East Fonthill\01 2018 Monitoring\Tech\Appendix D.xlsx

115

Date/Time	Maximum Temperatu re	Minimum Temperatu re	Mean Temperatu re	Heat Degree Days	Cool Degree Days	Total Rain	Total Snow	Total Precipitati on	Snow on Ground	Direction of Maximum Gust	Speed Maxin Gust	d of num
	(°C)	(°C)	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
4/1/2018	2.6	-2.1	0.3	17.7		0		0			<31	
4/2/2018	4.7	-4.6	0.1	17.9		0		0			<31	
4/3/2018	5.6	-2.1	1.8	16.2		0		9.3			<31	
4/4/2018	12.6	-3.2	4.7	13.3		0		3.9			<31	
4/5/2018	1.2	-4.6	-1.7	19.7		0		0.3			<31	
4/6/2018	4.9	-2.5	1.2	16.8		0		4.4	C)	<31	
4/7/2018	0.3	-5	-2.4	20.4		0		0	C)	<31	
4/8/2018	1.3	-4.9	-1.8	19.8		0		0	0)	<31	
4/9/2018	3.8	-5.4	-0.8	18.8		0		0	1		<31	
4/10/2018	4.6	-4	0.3	17.7		0		0			<31	
4/11/2018	6.7	-2.3	2.2	15.8		0		0			<31	
4/12/2018	16.3	-2.7	6.8	11.2		0		3.2			<31	
4/13/2018	9.1	3.4	6.3	11.7		0		10.0			<31	
4/14/2018	3.8	-2.7	0.6	17.4		0		13.6)	<31	
4/15/2016	3.1	-2.2	0.0	17.0		0		29.4		<u>)</u>	<31	
4/10/2010	4.1	0.5	2.3	10.7		0		20.2	1)	<31	
4/18/2010	1.2	-1.4	-0.1	15.1		0		0.4		1	<31 221	
4/19/2010	4	0.0 _0.9	2.3 1 0	16.1		0		0.2			~31	
4/20/2018	7.6	-0.0	2.6	15.4		0		0			<31	
4/21/2018	11.8	-3.3	4.3	13.7		0		0			<31	
4/22/2018	16.6	-3.1	6.8	11.2		0		0			<31	
4/23/2018	22.1	-0.6	10.8	7.2		0		0			<31	
4/24/2018	17.1	6.3	11.7	6.3		0		3.8			<31	
4/25/2018	12.5	4	8.3	9.7		0		8.1			<31	
4/26/2018	10.8	1.5	6.2	11.8		0		0			<31	
4/27/2018	17.3	0.1	8.7	9.3		0		0			<31	
4/28/2018	7.8	1.3	4.6	13.4		0		4.2			<31	
4/29/2018	11.8	0.7	6.3	11.7		0		0.2			<31	
4/30/2018	14.7	-0.9	6.9	11.1		0		0			<31	
5/1/2018	23.8	3	13.4	4.6		0		0			<31	
5/2/2018	24.9	13.1	19	0		1		0			<31	
5/3/2018	19.7	10.7	15.2	2.8		0		3.1			<31	
5/4/2018	23.7	6.6	15.2	2.8		0		4.5			<31	
5/5/2018	22.2	6.4	14.3	3.7		0		0			<31	
5/6/2018		9.2									<31	
5/1/2010	22.5	9.9	14.2	20		0		0			<31	
5/0/2018	23.5	4.0	14.2	0.7		0		0			<31	
5/10/2018	20.9	7.0 6	17.5	0.7 4 A		0		7.8		36	<u><</u>	<u>41</u>
5/11/2018	11	2.5	6.8	11 2		0		, .0 0			, <31	-
5/12/2018	15.4	5.3	10.4	7.6		0		16			<31	
5/13/2018	19.4	4.5	12	6		0		0			<31	
5/14/2018	19.3	7.5	13.4	4.6		0		0			<31	
5/15/2018	19.6	11.2	15.4	2.6		0		8.4		3	}	33
5/16/2018	23.5	7.7	15.6	2.4		0		0			<31	
5/17/2018	24.5	9.8	17.2	0.8		0		0		7	,	32
5/18/2018	18.9	10	14.5	3.5		0		0		5	;	44
5/19/2018	21.8	13	17.4	0.6		0		18.6			<31	
5/20/2018	20.1	8.7	14.4	3.6		0		0		30)	35
5/21/2018	23.2	5.7	14.4	3.6		0		0.2				
5/22/2018	20.8	13.8	17.3	0.7		0		7.7			<31	
5/23/2018	19.1	8.9	14	4		0		0			<31	
5/24/2018	25.2	8.2	16.7	1.3		0		0			<31	
5/25/2018	26.6	11.1	18.9	0	0	.9		0		23	6	39
5/26/2018	24.8	14	19.4	0	1	.4		0			<31	
5/27/2018	27.1	15.2	21.2	0	3	.2		0			<31	
5/28/2018	28.8	17.3	23.1	0	5	.1		0			<31	
5/29/2018	29.6	17.1	23.4	0	5	.4		0		-	<31	
5/30/2018	31.2	17.7	24.5	0	6	.5		0.2		14	<u> </u>	32
5/31/2018	28.6	20.3	24.5	0	6	.5		0		19)	43

115

Date/Time	Maximum Temperatu	Minimum Temperatu	Mean Temperatu	Heat Degree	Cool Degree	Total Rain	Total Snow	Total Precipitati	Snow on Ground	Direction of Maximum	Speed of Maximum
	(eQ)	(eQ)	(80)	Days	Days	()	()	011	()	Gust	Gust
6/1/2019	(*0)	(*0)	(-0)	(-0)	(-0)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(Km/n)
6/2/2018	20.0	17.0	22.2	1	4.2			0		1	< <u>></u>
6/2/2018	20.5	13.4	10.0	I	0			0		4	32
0/3/2010	23.3	13.1	10.2	1 0	0.2			0.0		01	<u> </u>
6/4/2018	19.8	12.4	10.1	1.9	0			U		28	52
6/5/2018	17.8	10.6	14.2	3.8	0			1.7		29	.21
6/0/2018	14.4	0.7	11.0	0.4	0			0			<31
6/1/2018	22.9	9	10	2	0			0			<31
6/0/2018	24.9	11 /	17.2	07	0			0			<31
6/10/2018	23.2	15.2	10.5	0.7	1 5			0		0	25
6/10/2010	23.0	10.2	19.0	0	1.0			0		0	27
6/12/2018	20	12.0	10.0	0	0.0			0		I	-21
6/12/2018	21.4	11.0	20.2	0	1.0			24		21	51
6/14/2018	20	11.0	20.3	0	2.3			2.4		20	54
6/14/2010	20.0	0.6	19	1	1			0		30	-21
6/16/2010	24.4	9.0	10 5	1	U 1 F			0			<31
6/17/2010	27.0	11.3	010	0	C.I م د			0			<31
6/18/2019	29.7	13.8 20	∠1.ŏ 2/ 0	0	3.8 ၉.೧			0 20			<u><</u> 31
6/10/2018	29.7	16.4	24.9	0	0.9			20		23	20
6/20/2018	23.0	10.4	19.0	0				0		0	-21
6/20/2018	23.7	14.1	10.9	03	0.9			0			<31
6/22/2018	23	12.3	17.1	0.3	0			1 0			<31
6/22/2010	23.3	10.0	20.2	0.9	22			1.0			<31
6/23/2010	19.0	10.4	20.3	1	2.3			7.0			<31
6/24/2010	10.9	10.0	16.2	17	0			20			<31
6/26/2018	22	10.0	17.5	0.5	0			0			<21
6/20/2018	20.3	19.6	20.5	0.5	25			0			<31
6/27/2010	22.4	10.0	20.5	0	Z.3			0.9			<31
6/20/2010	27.0	10.0	20.2	0	0.2						<01
6/29/2010	20	10.4	24.0	0	4.2			0		22	<01 25
7/1/2019	29.9	19.9	24.9	0	0.9			0.2			-21
7/1/2018	20.0	20.3	20.3	0	0.0			0.2		25	22
7/2/2018	29.9	22.0	20.3	0	0.3			0		20	
7/4/2018	31.4	20.2	20.0	0	7.0			0			
7/5/2018											<31
7/6/2018	23.0	14.5	10.2	0	1 2			0		33	37
7/7/2018	25.9	14.0	19.2	0	1.2			0.5			-21
7/8/2018	23.3	12 1	10.0	0	1.8			0.0			<31
7/9/2018	27.3	13.6	21.2	0	1.0			0		21	35
7/10/2018	30.8	18.0	21.2	0	6.5			0.2		21	35
7/11/2018	26.9	14.6	24.0	0	2.8			0.2		2	<31
7/12/2018	20.0	12.8	20.0	0	2.0			0.2			<31
7/13/2018	20.5	19.7	20.0	0	6.7			0.2			<31
7/14/2018	23.7	20.5	24.7	0	6.2			0			<31
7/15/2018	30.2	19.0	24.5	0	7 1			0.0			<31
7/16/2018	31.8	19.9	25.5	0	7.1			0			
7/17/2018	28.8	15.6	20.0	0	4.2			0		31	30
7/18/2018	20.0	15.0	20.2	0				02		51	
7/19/2018	2-1.3	12.9	19.9	0	 1			0.2			
7/20/2018	31.6	15 1	22.2	0	5.3			0		1/	42
7/21/2018	28.0	15.1	20.0	0	 			2 /		1/	35
7/22/2018	20.9 22.0	15.7	10.2	0	1 2			۲.4 2/ 2			25
7/23/2018	23.2	19.4	23.7	0	57			 		2	
7/24/2018	<u></u>	10.0	20.1	0	0.7			0			
7/25/2018											
7/26/2018	27 <i>A</i>	16.2	21 8	0	3.8			0		20	47
7/27/2018	25.3	18.4	21.0	0	3.8			03		20	
	_0.0			0	0.0			0.0		-0	

Table D-1Environment Canada Climate Data - Temperature and PrecipitationEast Fonthill Development

13.5

12.4

14.9

17.3

18.3

18.9

20.3

22.3

23

25.4

25.6

27.4

0

0

0

0

0.3

0.9

2.3

4.3

0.4

1.1

0

0

28

32

7/28/2018

7/29/2018

7/30/2018

7/31/2018

****|)

Table D-1
Environment Canada Climate Data - Temperature and Precipitation
East Fonthill Development

	Maximum	Minimum	Mean	Heat		Cool			Total		Direction	Speed of
Date/Time	Temperatu re	Temperatu re	Temperatu re	Degree Days		Degree Days	Total Rain	Total Snow	Precipitati on	Snow on Ground	of Maximum Gust	Maximum Gust
	(°C)	(°C)	(°C)	(°C)		(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
8/1/2018	25.9	20.1	23		0	5			0		20	43
8/2/2018	26.7	18.4	22.6		0	4.6			0			
8/3/2018	27.5	17.1	22.3		0	4.3			0			
8/4/2018	28.6	17	22.8		0	4.8			0			
8/5/2018	30.7	15.7	23.2		0	5.2			0			
8/6/2018	31.2	22.2	26.7		0	8.7			3.5		34	41
8/7/2018	27.3	21	24.1		0	6.1			1.3			
8/8/2018	25.4	19.2	22.3		0	4.3			18.3		25	34
8/9/2018	26.9	16	21.5		0	3.5			0			
8/10/2018	26.4	12.9	19.6		0	1.6			0			
8/11/2018	27.4	10.7	19.1		0	1.1			0			
8/12/2018	28.5	14.2	21.3		0	3.3			0			
8/13/2018	26.4	16.9	21.7		0	3.7			0			
8/14/2018	29.4	17.7	23.6		0	5.6			0.2			
8/15/2018	29.2	17.3	23.2		0	5.2			0		24	31
8/16/2018	29	17.7	23.4		0	5.4			0.9		18	38
8/17/2018	27.8	21.7	24.7		0	6.7			17			
8/18/2018	24	15.1	19.6		0	1.6			21.7		4	33
8/19/2018	25.1	14.3	19.7		0	1.7			0			
8/20/2018	26.1	15.2	20.6		0	2.6			0			
8/21/2018	27.3	18.5	22.9		0	4.9			28		18	41
8/22/2018	23.1	11.8	17.4	0	.6	0			0		34	38
8/23/2018	24.9	12.4	18.7		0	0.7			0			
8/24/2018	25.8	13.7	19.8		0	1.8			0			
8/25/2018	26.5	20.2	23.4		0	5.4			2.1		20	36
8/26/2018	26.5	20.3	23.4		0	5.4			0		25	31
8/27/2018	28.7	20.1	24.4		0	6.4			3.8		25	38
8/28/2018	28.9	23.4	26.1		0	8.1			0		22	48
8/29/2018	28.6	19.6	24.1		0	6.1			0		27	53
8/30/2018	20.9	13.2	17		1	0			0			
8/31/2018	24.1	12.4	18.2		0	0.2			0			
9/1/2018	28.9	13.7	21.3		0	3.3			0			
9/2/2018	27.3	22.5	24.9		0	6.9			1.1			
9/3/2018	29.7	19.9	24.8		0	6.8			7		32	51
9/4/2018	30.3	19.1	24.7		0	6.7			0			
9/5/2018	30.8	19.9	25.3		0	7.3			0			
9/6/2018	24.5	18.3	21.4		0	3.4			0			
9/7/2018	24.9	16.8	20.8		0	2.8			0			
9/8/2018	17.6	9.7	13.6	4	.4	0			0		4	37
9/9/2018	15.1	10	12.6	5	.4	0			1.9		6	38
9/10/2018	17.7	11.9	14.8	3	.2	0			22.3		10	38
9/11/2018	19.3	12.3	15.8	2	.2	0			4.4			
9/12/2018	24.6	12.6	18.6		0	0.6			0			
9/13/2018	27.8	15.8	21.8		0	3.8			0			
9/14/2018	29.1	17.7	23.4		0	5.4			0			
9/15/2018	29.1	17.5	23.3		0	5.3			0			
9/16/2018	29.9	16.2	23		0	5			0			
9/17/2018	25.7	16.6	21.1		0	3.1			0			
9/18/2018	27.8	16.4	22.1		0	4.1			0			
9/19/2018	21.1	13.2	17.2	0	.8	0			0			
9/20/2018	22.2	11.4	16.8	1	.2	0			0.3			
9/21/2018	30.2	13.6	21.9		0	3.9			0.8		29	53
9/22/2018	15.5	5.6	10.5	7	.5	0			0.2		32	39
9/23/2018	20.5	3.9	12.2	5	.8	0			0			
9/24/2018	20.4	10.7	15.6	2	.4	0			8.1		16	38
9/25/2018	22.3	15.4	18.9		0	0.9			13.2		16	39
9/26/2018	22.9	7.8	15.3	2	.7	0			6.5		30	43
9/27/2018	17.9	6.3	12.1	5	.9	0			0			
9/28/2018	19.8	8.8	14.3	3	.7	0			1		31	41
9/29/2018	16.9	6.8	11.9	6	.1	0			0.2		27	35
9/30/2018	14.3	8.5	11.4	6	.6	0			1.8			

Date/Time	Maximum Temperatu re	Minimum Temperatu re	Mean Temperatu re	Heat Degree Days	Cool Degree Days	Total Rain	Total Snow	Total Precipitati on	Snow on Ground	Direction of Maximum Gust	Speed of Maximum Gust
	(°C)	(°C)	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
10/1/2018	12.6	10.3	11.5	6.5	0)		3.8		7	32
10/2/2018	21.4	10.6	16	2	0)		19.6			
10/3/2018	22	11.7	16.8	1.2	0)		0		20	33
10/4/2018	23.3	5.5	14.4	3.6	0)		8.5		25	45
10/5/2018	14	6.6	10.3	7.7	0)		0			
10/6/2018	21.9	10.9	16.4	1.6	0)		22.7			
10/7/2018	17.5	12.2	14.9	3.1	0)		0			
10/8/2018	25.4	11.9	18.7	0	0.7			2.7			
10/9/2018	27.8	18.7	23.2	0	5.2	2		0		21	34
10/10/2018	27.4	19	23.2	0	5.2	2		0		20	32
10/11/2018	22.8	9.4	16.1	1.9	0)		0.2		29	41
10/12/2018	10.4	4.9	1.1	10.3	0)		0.8		30	39
10/13/2018	10.9	2	6.4	11.6	0)		0.9		27	35
10/14/2018	14.9	2.6	8.7	9.3	0)		0			50
10/15/2018	14.4	3	8.7	9.3	0)		2.5		29	50
10/16/2018	12.3	1.2	0.7	11.3	0)		0.2		20	51
10/17/2018	11.5	2.4	1	11	0)		0		30	52
10/16/2016	9.0	-1.0	4	14	0))		0		20	ی 50
10/19/2018	13.0	9.1	11.4	0.0	0)		U		24	00
10/20/2018	14.1 6.2	4.0	9.3	0.7	0)		0.0		20	40
10/21/2018	10.2	1.0		12 6)		0.2		3Z 21	40
10/22/2018	10.7	1	5.4	12.0)		0		21	59
10/23/2018	12.1	-1	5.5	12.0	0)		0		20	54
10/24/2018	7.6	2.5	51	12.0	0)		0			
10/25/2018	7.0	2.5	5.2	12.9	0	,)		0.5		8	33
10/20/2018	6.7	2.5	1.6	12.0	0)		15.6		7	38
10/28/2018	6.2	2.5	4.0	13.4	0)		3.0			
10/20/2018	8.9	-0.1	4.1	13.6	0)		2.4		28	41
10/20/2018	11.6	-1 5	5.1	12.0	0)		<u> </u>		20	
10/31/2018	14.2	7.3	10.8	7.2	0)		9.9		22	43
11/1/2018	7.9	6.5	7.2	10.8	0)		46.4		5	45
11/2/2018	6.9	3.7	5.3	12.7	0)		3.4		5	45
11/3/2018	6.8	3	4.9	13.1	0)		1.3		29	40
11/4/2018	10.1	-1.3	4.4	13.6	0)		0.4			
11/5/2018	12.6	7	9.8	8.2	0)		1.3		19	34
11/6/2018	14.7	9.2	12	6	0)		6.6		27	65
11/7/2018	9.6	3.9	6.7	11.3	0)		0		24	51
11/8/2018	6.9	-0.8	3	15	0)		0.2		31	33
11/9/2018	6.1	-1.3	2.4	15.6	C)		7.9		28	48
11/10/2018	1.6	-2.7	-0.5	18.5	0)		0		27	57
11/11/2018	4.2	-3.6	0.3	17.7	0)		0			
11/12/2018	6.3	-0.1	3.1	14.9	0)		0			
11/13/2018											
11/14/2018	1.4	-4.3	-1.5	19.5	0)		0		28	36
11/15/2018	0.4	-3.5	-1.5	19.5	0			7.5			
11/16/2018	2.8	0.1	1.4	16.6	0			3	4	29	44
11/17/2018	3.2	-0.9	1.1	16.9	0)		0	0) 29	36
11/18/2018	2.8	-1	0.9	17.1	0)		1	1		
11/19/2018	4.5	-3.9	0.3	17.7	0)		0.2	()	
11/20/2018	1.3	-3	-0.9	18.9	0)		0.9	() 28	41
11/21/2018	2.1	-9.3	-3.6	21.6	0)		1.5	1	30	51
11/22/2018	-5.8	-11.1	-8.4	26.4	0	,		0	(v 2	34
TT/23/2018	3.8	-5.8	-1	19	0)		0	1	<u> </u>	
11/24/2018	7.9	0.1	4	14	0)		3.4	(<u>, 19</u>	44
11/20/2010	8	2.4	5.2	12.8	0	,)		10.0	(,	
11/20/2018	1.5	1.0	4.6	13.4) \		18.3	~	20	30
11/20/2010	1.7	-1.3	0.2	17.0	0	,		5.1	47	v 28 v 20	49
11/20/2010	 م ه	-1.0	E	11.0		,		ა. 9 ი	11	ა0 იი	42
11/23/2010	0.8	-1.0	0.0- 0 0	10.0		,)		0	۱۱ م	∠o	- 34
11/30/2010	1.1	-0.5	0.3	17.7	U	,		U	5	,	

NS

Table D-1Environment Canada Climate Data - Temperature and PrecipitationEast Fonthill Development

Date/Time	Maximum Temperatu re	Minimum Temperatu re	Mean Temperatu re	Heat Degree Days	Cool Degree Days	Total Rain	Total Snow	Total Precipitati on	Snow on Ground	Direction of Maximum Gust	Speed of Maximum Gust
	(°C)	(°C)	(°C)	(°C)	(°C)	(mm)	(cm)	(mm)	(cm)	(10's deg)	(km/h)
12/1/2018	2.4	-0.1	1.2	16.8	()		3.8	5		
12/2/2018	14.1	2.4	8.2	9.8	()		4.8	0	26	56
12/3/2018	6	-0.5	2.8	15.2	()		0.7	0	27	55
12/4/2018	0.3	-6.8	-3.3	21.3	()		0	0		
12/5/2018	0.5	-7.5	-3.5	21.5	()		0	0		
12/6/2018	1.2	-7.2	-3	21	()		5.7		21	38
12/7/2018	-3.1	-8.9	-6	24	()		0.4	5		
12/8/2018	-1.8	-7	-4.4	22.4	()		1.5	10	29	31
12/9/2018	-0.3	-10	-5.1	23.1	()		0	9		
12/10/2018	1.4	-4.2	-1.4	19.4	()		0	8		
12/11/2018	-0.1	-2.2	-1.1	19.1	()		0	7	24	33
12/12/2018	1.6	-8.6	-3.5	21.5	()		0	6		
12/13/2018	5.3	-0.6	2.4	15.6	()		1.2	6		
12/14/2018	6.5	0	3.3	14.7	()		0	2		
12/15/2018	3.7	-0.2	1.8	16.2	()		0	1		
12/16/2018	4.7	1.1	2.9	15.1	()		0	1	25	38
12/17/2018	3.3	-0.6	1.3	16.7	()		0	0	31	46
12/18/2018	-0.3	-6.1	-3.2	21.2	()		0.2		31	38
12/19/2018	5.1	-5.3	-0.1	18.1	()		0		18	31
12/20/2018	6.8	-2.1	2.3	15.7	()		13.1		5	36
12/21/2018	5.3	0.2	2.8	15.2)		10.8	0	31	41
12/22/2018	0.3	-1.2	-0.5	18.5	()		0		29	44
12/23/2018	2.3	-1.3	0.5	17.5	()		0			
12/24/2018	2.2	-0.7	0.8	17.2	()		0		28	40
12/25/2018	1.4	-1.5	-0.1	18.1	()		0			
12/26/2018	2.9	-1.7	0.6	17.4	()		0			
12/27/2018	7	-4.3	1.3	16.7	()		5.7		19	43
12/28/2018	11.9	3.1	7.5	10.5	()		4.2		25	48
12/29/2018	3.1	-3	0.1	17.9	()		0.4		27	39
12/30/2018	1.1	-4.1	-1.5	19.5	()		1			
12/31/2018	13.1	-4.1	4.5	13.5	()		16.2	2	27	77