# **REGIONAL MUNICIPALITY OF NIAGARA**

# REGIONAL ROAD 20 REDEVELOPMENT POST-DEVELOPMENT MONITORING REPORT

December 11, 2018







11 December 2018

Frank Tassone Regional Municipality of Niagara 1815 Sir Isaac Brock Way P.O. Box 1042 Thorold, Ontario Canada L2V 4T7

Dear Sir:

Subject: Regional Road 20 Redevelopment - Post-Development

Monitoring Report

Client ref.: 0.01.06 77 020 0841

We are pleased to provide four copies of the Post-development Surface Water and Erosion Monitoring Report for the Regional Road 20 Redevelopment. Copies have been forwarded to the Niagara Peninsula Conservation Authority and the Town of Pelham on your behalf.

The report provides background information on the physical setting, details of the work program completed, and a presentation of the construction monitoring data for the Regional Road 20 Redevelopment. Conclusions and recommendations for future monitoring programs, as necessary, are included in the report. Relevant technical data is appended.

We trust that this report satisfies your requirements.

Yours sincerely,

Bailey Walters, MSc, PGeo

Senior Geoscientist

Encl.

cc: Town of Pelham

Niagara Peninsula Conservation Authority

WSP ref.: 111-53018-00

# SIGNATURES

PREPARED BY

Karen Bailey, BASc\

**Environmental Consultant** 

**REVIEWED BY** 

Bailey Walters MSo, PGeo, OPESAIRA

Senior Geoscientist

This report was prepared by WSP Canada for the account of the Regional Municipality of Niagara, in accordance with the professional services agreement. The disclosure of any information contained in this report is the sole responsibility of the intended recipient. The material in it reflects WSP's best judgement in light of the information available to it at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. WSP accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This limitations statement is considered part of this report.

The original of the technology-based document sent herewith has been authenticated and will be retained by WSP for a minimum of ten years. Since the file transmitted is now out of WSP's control and its integrity can no longer be ensured, no guarantee may be given with regards to any modifications made to this document.



# TABLE OF CONTENTS

| 1                                              | INTRODUCTION                                                                                                                                         | 1              |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1.1                                            | Background                                                                                                                                           | 1              |
| 1.2                                            | Objective and Scope                                                                                                                                  | 2              |
| 1.3<br>1.3.1<br>1.3.2                          | Physical Setting  Geology and Hydrogeology  Surface Water                                                                                            | 2              |
| 2                                              | MONITORING PROGRAM                                                                                                                                   | 5              |
| 2.1                                            | Surface Water                                                                                                                                        | 5              |
| 2.2                                            | Erosion                                                                                                                                              | 6              |
| 3                                              | MONITORING PROGRAM RESULTS                                                                                                                           | 7              |
|                                                |                                                                                                                                                      |                |
| 3.1                                            | Surface Water                                                                                                                                        | 7              |
| <b>3.1</b> 3.1.1                               | Surface Water Automated Monitoring Stations                                                                                                          |                |
|                                                |                                                                                                                                                      | 7              |
| 3.1.1                                          | Automated Monitoring Stations                                                                                                                        | 7<br>13        |
| 3.1.1<br>3.1.2                                 | Automated Monitoring Stations  Manual Surface Water Flow                                                                                             | 7<br>13        |
| 3.1.1<br>3.1.2<br>3.1.3                        | Automated Monitoring Stations  Manual Surface Water Flow  Surface Water Temperature                                                                  | 13<br>13<br>13 |
| 3.1.1<br>3.1.2<br>3.1.3<br>3.1.4               | Automated Monitoring Stations  Manual Surface Water Flow  Surface Water Temperature  Surface Water Quality                                           | 7131313        |
| 3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br><b>3.2</b> | Automated Monitoring Stations  Manual Surface Water Flow  Surface Water Temperature  Surface Water Quality  Erosion Monitoring Results               | 13131313       |
| 3.1.1<br>3.1.2<br>3.1.3<br>3.1.4<br>3.2<br>3.3 | Automated Monitoring Stations  Manual Surface Water Flow  Surface Water Temperature  Surface Water Quality  Erosion Monitoring Results  Climate Data |                |



# **TABLES** TABLE 1-1 **REGIONAL ROAD 20 REDEVELOPMENT** CONSTRUCTION AND MONITORING PHASES......1 TABLE 1-2 OUATERNARY GEOLOGY......2 TABLE 2-1 MONITORING PROTOCOLS AND PROCEDURES ......5 TABLE 3-1 SURFACE WATER SAMPLING DATES.....14 **FIGURES** FIGURE 1 SITE PLAN FIGURE 2 RICE ROAD TRIBUTARY- 2007 EROSION SURVEY FIGURE 3 RICE ROAD TRIBUTARY- 2016 EROSION SURVEY FIGURE 4 RICE ROAD TRIBUTARY- EROSION SURVEY (2007 -2016) RICE ROAD TRIBUTARY- EROSION SURVEY (2015 - 2016) FIGURE 5 FIGURE B-1 CATARACT ROAD TRIBUTARY FLOW MONITORING AND PRECIPITATION FIGURE B-2 RICE ROAD TRIBUTARY FLOW MONITORING (SWI) AND **PRECIPITATION** FIGURE B-3 SWI AUTOMATED AND MANUAL FLOW **MEASUREMENTS** FIGURE B-4 RICE ROAD TRIBUTARY FLOW MONITORING (SW3) AND **PRECIPITATION** FIGURE B-5 SW3 AUTOMATED AND MANUAL FLOW **MEASUREMENTS**



- FIGURE B-6 MERRITTVILLE HIGHWAY TRIBUTARY FLOW MONITORING AND PRECIPITATION
- FIGURE C-1 SURFACE WATER QUALITY CATARACT ROAD TRIBUTARY
- FIGURE C-2 SURFACE WATER QUALITY RICE ROAD TRIBUTARY
- FIGURE C-3 SURFACE WATER QUALITY MERRITTVILLE HIGHWAY TRIBUTARY
- FIGURE D-1 ATMOSPHERIC AND SURFACE WATER TEMPERATURE

# **APPENDICES**

- A TERMS OF REFERENCE
- **B** SURFACE WATER FLOW DATA
- C SURFACE WATER QUALITY DATA
- D CLIMATE DATA

# 1 INTRODUCTION

The Regional Municipality of Niagara has redeveloped approximately three kilometres of Regional Road 20, between the Highway 406 junction and the Town of Pelham. The development area, shown on Figure 1, is located in the Town of Pelham and the City of Thorold, in the Regional Municipality of Niagara.

# 1.1 BACKGROUND

Jagger Hims Limited (now WSP Canada Limited) completed the 2007-2008 pre-construction surface water and erosion monitoring program, including the field investigation and reporting, which was finalized in April 2009.

Construction for the Redevelopment of Regional Road 20 began in May 2009 and was to be completed in a phased approach over the three years. Phase 1 construction was completed in May to October 2009. Phase 2 construction was completed in June to November 2010. Phase 3 construction, scheduled to be completed in 2011, was postponed and completed in April to October 2012.

Post-construction monitoring was initiated following completion of each construction phase. Phase 1 post-construction monitoring was undertaken from October 2009 to October 2014. Phase 2 post-construction monitoring was undertaken from November 2010 to November 2015. Phase 3 post-construction monitoring began in October 2012 and was completed October 2016. The construction and environmental monitoring phases are outlined in Table 1-1, below.

Environmental monitoring undertaken at the three phase locations after 2008 and prior to the actual start date of the construction is considered as pre-construction monitoring at that location.

Table 1-1 Regional Road 20 Redevelopment Construction and Monitoring Phases

| Construction Phase | LOCATION                                      | CONSTRUCTION PHASE ENVIRONMENTAL MONITORING | Post-construction Environmental Monitoring |
|--------------------|-----------------------------------------------|---------------------------------------------|--------------------------------------------|
| Phase 1            | East of Rice Road to east of<br>Cataract Road | May 2009 - October 2009                     | October 2009 –<br>October 2014             |
| Phase 2            | East of Cataract Road to Hwy 406              | June – November 2010                        | November 2010 -<br>November 2015           |
| Phase 3            | West of Station Street to east of Rice Road   | April – October 2012                        | October 2012 to<br>October 2016            |

This report provides final summary of the monitoring completed between 2008 and 2016, which includes pre-construction, construction, and post-construction monitoring at the Regional Road 20 Redevelopment, located within the Twelve Mile Creek watershed. Phase 1 monitoring requirements were satisfied as of October 2014. The historical monitoring data for Phase 1 is included in the report for reference purposes. Monitoring locations at Cataract Road (SW4 and SW5) are within the area affected by Phase 1 construction, monitoring locations at Rice Road (SW1, SW2 and SW3) are within the area

affected by Phase 1 and Phase 3 construction, and the locations at the Merrittville Highway (SW6 and SW7) are affected by Phase 2 construction.

# 1.2 OBJECTIVE AND SCOPE

The principal objective of the construction monitoring program for the Regional Road 20 Redevelopment is to evaluate the impacts from development against the baseline information collected during the pre-construction phase of monitoring. If an unacceptable impact is identified, mitigation measures will be recommended.

The monitoring program included a data collection component, and an analysis and interpretation component. This report provides the results of the surface water and erosion monitoring program activities that occurred over the period of 2016 calendar year.

# 1.3 PHYSICAL SETTING

This section describes the local geology, hydrogeology, and hydrology. Within the Surface Water section, the monitoring locations are described in the physical context.

# 1.3.1 GEOLOGY AND HYDROGEOLOGY

The redeveloped area between Station Street and Highway 406 in Pelham and Thorold is located to the northeast of the Fonthill Kame Complex.

The site is located within the Haldimand Clay Plain physiographic region (Chapman and Putnam, 1984). The fine-grained glaciolacustrine overburden in the area, deposited by pro-glacial Lake Warren, varies in thickness between 23 and 35 metres.

Local overburden thickness is mapped as approximately 21 m at the eastern end of the project site to 38 m at the west (Vos, 1969). The bedrock contact is located at approximately 160 mASL at the eastern end of the project site to 145 mASL in the west (Feenstra, 1981). The underlying bedrock is a succession of Palaeozoic beds that dip slightly southward, toward Lake Erie.

Typical quaternary geology of the area (Fenco MacLaren, 1995) includes the following units:

## Table 1-2 Quaternary Geology

----

| GEOLOGIC UNIT | DESCRIPTION                                                                                                                                                                                                                                                                                   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QUATERNARY    | Upper Glaciolacustrine Unit                                                                                                                                                                                                                                                                   |
| DEPOSITS      | The surficial overburden in the area is mapped as an upper glaciolacustrine unit that is composed of a brown, reddish, and grey silty clay to clayey silt that is massive to thinly-stratified. This unit may be present from ground surface to approximately 10 metres below ground surface. |

| GEOLOGIC UNIT | DESCRIPTION                                                                                                                                                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Halton Till Underlying the upper glaciolacustrine unit is the Halton Till, a brown to grey, massive to laminated clayey silt with a sand content of less than 20 percent. The till is approximately 10 metres thick. |
|               | Lower Glaciolacustrine Unit  Beneath the Halton Till is a lower glaciolacustrine unit of silty clay that is approximately 10 metres thick.                                                                           |
|               | Lower Till Unit The Lower Till unit consists of sandy silt with lenses of silt, sand, and gravel. The Lower Till unit is approximately 5 metres thick.                                                               |
| BEDROCK       | Salina Formation The bedrock consists of inter-bedded dolostones and shales of the Salina Formation.                                                                                                                 |

The upper glaciolacustrine unit, the Halton Till, and the lower glaciolacustrine unit are reportedly fairly uniform and predictable. The sand and gravel lenses within the lower till unit are considered non-uniform and unpredictable since they are laterally variable and discontinuous.

Generally, hydraulic conductivity in overburden soils is low due to the fine-grained nature of the material. Local topography (including existing ditches and swales) and seasonal precipitation strongly influence groundwater flow through fractures in the shallow, weathered overburden.

#### 1.3.2 SURFACE WATER

The study area is located within the Twelve Mile Creek watershed, which drains to the north, ultimately to Lake Ontario.

#### 1.3.2.1 CATARACT ROAD TRIBUTARY (SW4 & SW5)

In the vicinity of the intersection of Cataract Road and Regional Road 20, the area is drained to the north, via a roadside ditch and swale through agricultural fields, before joining the Twelve Mile Creek in the northeast of the study area.

Surface water station SW4 is located at the intersection of Cataract Road and Regional Road 20, at the evert of the culvert beneath Regional Road 20. The logger in the culvert was removed on 7 May 2009 to facilitate the replacement of the culvert. The logger was re-installed on 5 June 2009. The original circular corrugated steel pipe culvert was replaced with an elliptical concrete culvert (975 mm x 1535 mm) in May 2009.

From the culvert, the flow continues north in the roadside ditch on the west side of Cataract Road for approximately 460 m. North of the culvert, the roadside ditch collects additional road runoff from Cataract Road and McSherry Lane before flowing east through a culvert under Cataract Road and continuing northeast in a drainage swale.

Surface water station SW5 is located approximately 70 m east of Cataract Road, near the beginning of the agricultural drainage swales.

No natural channel was encountered in the vicinity of the intersection of Regional Road 20 and Cataract Road

## 1.3.2.2 RICE ROAD TRIBUTARY (SW1, SW2 & SW3)

The southwestern area of the site drains to Twelve Mile Creek through the Rice Road Tributary of Twelve Mile Creek. A square, closed-bottom concrete culvert (approximately 1.22 m wide) beneath Regional Road 20 drains away water from the area surrounding the intersection with Rice Road.

There are three surface water stations established on the Rice Road Tributary. From 2009 to 2015, SWI was located at the culvert invert on the south side of Regional Road 20. Runoff collected from the properties northeast, southeast and southwest of the Rice Road intersection flows into the culvert. Following construction of a storm-water management pond in 2015, the invert at the south side was reconfigured making it inaccessible for monitoring and surface water flow that formerly joined into the box culvert beneath RR20 was redirected into the SWM Pond; as a consequence, SWI was relocated to near the evert (north end) of the box culvert. The result is that roadside drainage that previous discharged directly to the Rice Road Tributary (by-passing SWI) was now directed to the SWM Pond and the resultant (attenuated) discharge was now captured by SWI monitoring.

SW2 is located approximately 3 m north of the box culvert evert.

Between SWI and SW2, the tributary receives surface water runoff from Regional Road 20 storm drains and from the roadside ditch located on the north side of Regional Road 20. The storm drains collect road runoff from Regional Road 20, west of the Rice Road Tributary. The roadside ditch collects water from Regional Road 20 and Hurricane Road, west of the Rice Road Tributary and east as far as Rice Road. The collected runoff then flows north into the narrowly confined, densely wooded channel of the Rice Road Tributary.

SW3 is located approximately 40 metres north of the confluence of these inputs, in the natural channel.

## 1.3.2.3 MERRITTVILLE HIGHWAY TRIBUTARY (SW6 & SW7)

A watercourse, south of Regional Road 20 and east of the Merrittville Highway collects excess surface water and flows north through a concrete box culvert under Regional Road 20. Surface water station SW6 is located approximately 80 m east of the intersection of Merrittville Highway and Regional Road 20.

Surface water flowing from the box culvert joins water collected from the short roadside ditches on the north side of Regional Road 20. The runoff then enters a smaller underground culvert leading from Regional Road 20 on the east side of a restaurant, located at the corner property.

The runoff flows northwest via the buried concrete culvert, crossing beneath Merrittville Highway approximately 140 m north of the Regional Road 20 intersection. Approximately 15 m downstream of the culvert evert the roadside ditch transitions to a natural channel and continues to the north.

Surface water station SW7 is located approximately 50 m downstream of the Merrittville Highway culvert, in the natural watercourse.

# 2 MONITORING PROGRAM

The monitoring program for the Regional Road 20 Redevelopment included surface water flow monitoring, surface water quality sampling and erosion monitoring in accordance with the monitoring requirements detailed in Appendix A. The program has been approved by the Niagara Peninsula Conservation Authority (NPCA).

# 2.1 SURFACE WATER

Surface water flow monitoring stations are shown on Figure 1. Flow monitoring was conducted on a continuous basis at monitoring stations at SW1 at Rice Road and at SW6 at the Merrittville Highway. This monitoring included 10-minute interval measurements of water level, velocity and calculated discharge rate. In addition, water temperatures were recorded electronically by submerged temperature loggers at 10-minute intervals. The water level and temperature at the SW3 monitoring station on the Rice Road Tributary were recorded at hourly intervals by a Levelogger located in a stilling well in the watercourse. Manual flow measurements were made during each site inspection of the monitoring stations. Flows were measured manually generally following the USGS area-velocity method.

Annual surface water quality monitoring was completed to correspond with specific weather conditions that included spring runoff, twice during dry periods, and twice during precipitation. The locations of the surface water monitoring stations are shown on Figure 1, as required by the Terms of Reference (Appendix A). The surface water monitoring protocols are presented in Table 2-1.

#### Table 2-1 Monitoring Protocols and Procedures

#### SURFACE WATER SAMPLING

Attempts are made to schedule surface water monitoring events to correspond with intended freshet, dry, or wet event monitoring.

Surface water samples at each location are collected prior to flow measurement.

Surface water samples are collected directly into the laboratory provided bottles that do not have preservatives. For bottles with preservatives added, standard grab sampling methods are used and then the water is decanted into laboratory provided bottles with the appropriate preservatives. The sample container is pointed upstream and care is taken to avoid particulate and organic matter in the water.

Sample bottles are marked, labelled, and sealed in the field.

Samples are stored in ice packed coolers and delivered or couriered to the laboratory at the end of each day, under Chain of Custody procedures.

Field parameters (pH, conductivity, dissolved oxygen, and temperature) are measured from a separate beaker of water using calibrated instruments.

When the flows are present, stream flow discharge is calculated based on the cross-sectional area of the stream, and the water velocity.

A cross-sectional profile of the stream is determined by measuring the cross-sectional width and depth of the wetted stream at incremental sections. The velocity is measured using an electromagnetic velocity meter by measuring the average velocity of each section.

Field notes including date, weather, time, sampling data, staff, field parameters, visual observations, and number of bottles are marked on the Water Sampling Field Data sheets in the Project Field Book.

Surface water sampling was conducted during five occasions in 2015 (one spring freshet event, two dry events, and two wet events). Surface water stations SW1, SW2, SW3, SW6 and SW7 were sampled successfully on all five occasions.

Dissolved oxygen, temperature, pH, and conductivity were measured in the field during sampling collection.

Surface water samples were submitted to AGAT Laboratories of Mississauga for analysis of the following parameters, as set out in the Terms of Reference (Appendix A).

- Total Suspended Solids
- Chloride
- Nitrogen Species: Total Ammonia, Nitrate + Nitrite, and Total Kjeldahl Nitrogen
- BOD
- E. coli
- Total Phosphorus

# 2.2 EROSION

A section of the Rice Road Tributary, from Regional Road 20 northward for approximately 150 m, was surveyed by William A. Mascoe Surveying Limited annually in April from 2007 to 2016. The creek was surveyed at approximately one-metre intervals along the watercourse to obtain breaks in grade, including lowest points, defined stream banks, and the edges of the creek.

Field benchmarks were established relative to the Regional Niagara co-ordinate system in Universal Transverse Mercator (UTM) system co-ordinates in metres of easting and northing referenced to the North American Datum 1983 (NAD83).

# **3 MONITORING PROGRAM RESULTS**

Section 3 provides a summary of the results of surface water and erosion monitoring.

# 3.1 SURFACE WATER

Section 3.1 provides a summary of the surface water flow monitoring, automated and manual, and the surface water quality, including temperature and chemical characteristics.

## 3.1.1 AUTOMATED MONITORING STATIONS

Automated surface water flow monitoring stations were installed on 31 March 2016 and removed on 9 December 2016. Stations were installed at stations SWI (south side of Regional Road 20 near Rice Road), SW3 (north side of Regional Road 20 near Rice Road), and SW6 (Regional Road 20 and Merrittville Highway), as shown in Figure 1. These stations, except for SW3, consisted of data logging equipment to collect velocity and temperature at 10-minute intervals.

Three types of monitoring station equipment were used. Station SWI was equipped with a Greyline Stingray™ Portable Level-Velocity logger with submerged depth/velocity sensor. Station SW6 was equipped with an American Sigma 910™ Portable Area-Velocity flow meter with submerged depth/velocity sensor. Surface water station SW6 was also equipped with an Onset StowAway™ Tidbit underwater temperature logger.

As the American Sigma flow meter was routinely found to silt up in the natural channel at SW3, it was replaced with a Solinst Levelogger™ installed within a stilling well in 2010. The stilling well was installed such that its screen transects the creek bed, ensuring that the creek stage is accurately measured. The logger is located in a well sump below the ground surface and is programmed to record water levels at hourly intervals.

The discharge rates were calculated from the direct measurements of velocity and depth using the fixed shape and dimension of the culvert/structure in which each was installed. Discharge rates are calculated using area-velocity method and the water level and velocity data from the American Sigma open channel flow meters. In instances where a positive, non-zero water level was recorded but the velocity was zero, calculated discharge is zero, and vice versa.

At SW3, where creek stage is monitored by the Levelogger located in the stilling well, the discharge rate was related to the recorded water levels through an empirical relationship between the manual discharge rate measurements and the water levels recorded by the logger at the time of the manual discharge rate reading.

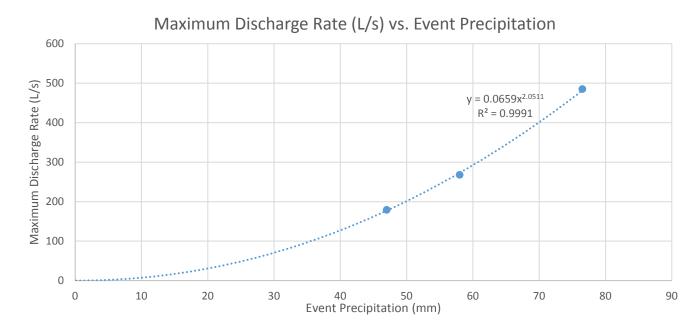
The monitoring period was determined based on the occurrence of freezing weather. While the equipment can handle temperatures close to freezing, the pressure transducers use diaphragms that can rupture when frozen.

As noted above, the monitoring station equipment was installed in March or early April of each year, as this was the earliest the equipment could be installed due to freezing weather conditions. Similarly, the monitoring station equipment was removed in November or December of each year due to freezing conditions. While the equipment can handle some temperatures close to freezing, the pressure transducers use diaphragms that can be ruptured when frozen. The exception is the Levelogger, installed below ground surface at SW3, which can remain in situ year-round.

The monitoring equipment was inspected during each site visit. In a number of cases, debris (soil, twigs, worms, etc.) around the sensors was removed. Data from the monitoring equipment were downloaded to a portable laptop in the field. During inspections, spot manual measurements of flow and water depths were made and noted in the field book.

Stream flow was measured manually during each site inspection of the monitoring stations and the results are included in Table B-6, Appendix B. Flows were measured manually at all surface water stations using the USGS area velocity method whereby the depth of the station profile was measured at 10 cm intervals and the velocity measured at 60% of the depth.

The results of the automated flow monitoring are presented graphically on Figures B-1 through B-8, and a summary of the flow data is included in Tables B-1 through B-5, Appendix B.


# 3.1.1.1 CATARACT ROAD TRIBUTARY (SW4)

At station SW4, the five-years of post-development monitoring period ended in 2014. The historical results of the automated flow data collection at SW4 are presented on Figure B-1 for reference purposes. Table B-1 presents a summary of the flow data from SW4.

The maximum discharge rates during each construction period are summarized in the following table and graph.

Table 3-1 Summary of Maximum Discharges - Cataract Road Tributary SW4

| Period            | Precipitation (mm)   |      | Max 1-hour       | Maximum        |
|-------------------|----------------------|------|------------------|----------------|
|                   | 1-week Lead-up Event |      | intensity (mm/h) | Discharge Rate |
|                   |                      |      |                  | (L/s)          |
| Pre-Construction  | 29                   | 47   | 5.5              | 179            |
| Construction      | 9                    | 58   | 39.5             | 268            |
| Post-Construction | 58                   | 76.5 | 4.75             | 485            |



Pre-construction maximum discharge was calculated to be 179 L/s. (47 mm storm event with maximum 1-hour intensity of 5.5 mm/h). The maximum discharge calculated for the construction period (May through October 2009) was 268 L/s. The maximum post-construction discharge occurred in late October 2012 and was calculated to be 485 L/s. The discharge

## 3.1.1.2 RICE ROAD TRIBUTARY (SWI & SW3)

The results of the automated flow and temperature data collection for SW1 and SW3 are presented on Figures B-2 through B-5 of Appendix B.

Automated flow and temperature measurement at SWI was recorded with a Greyline Stingray™ Portable Level-Velocity logger installed in the 120-cm concrete box culvert that was constructed during the 2012 monitoring period. The box culvert was extended by approximately 10 m with a concrete pipe between June and September 2015. Table B-2 presents a summary of the 2016 and the historical flow data from SWI. The results of the automated flow and temperature data collection at SWI are presented on Figures B-2 and B-3. During the 2016 monitoring season, surface water temperature at SWI on the Rice Road tributary showed seasonal temperature fluctuations.

The precipitation events were determined based on regional climatic data provided in Appendix D.

The results of manual flow measurements, obtained using USGS method, are presented in Table B-6.

The monitoring station at SW3 is located in a natural channel and therefore required modification for automated flow monitoring. A 100 cm-diameter steel half-pipe was installed to house the submerged flow meter sensor, which allows for a uniform correlation between depth, velocity, and flow, in the irregularly shaped natural channel.

Automated flow data at SW3 may be unreliable for some periods during 2009 based on the following issues encountered during periodic site visits:

- Silt accumulation: during the 18 June inspection event, it was noted that silt had accumulated on the submerged flow meter sensor. The silt was removed and the flow meter repositioned to minimise further accumulations.
- Recalibration: during the 24 July inspection event, it was noted that although the sensor was submerged, the meter was recording no depth. The meter was recalibrated in the field, which seemed to correct the issue.
- Dislodgment of monitoring equipment: during the 26 August monitoring event, the half-pipe at this station had been dislodged and washed downstream. The data indicated that this had occurred on 9 August, following very high flows resulting from a substantial rain event.

Due to the issues with the flow meter installation at SW3, in spring 2010, the American Sigma open-channel flow meter and Onset StowAway™ Tidbit were replaced with a Solinst Levelogger™ installed within a stilling well in the stream channel. The Levelogger recorded water levels and temperature. As the logger is installed within the well sump, it is protected from temperature extremes and can remain in place throughout the year.

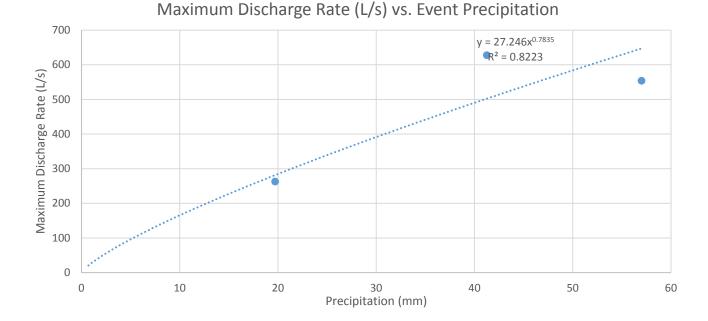
The SW3 flow data from the American Sigma flow meter and the water level data from the Levelogger are presented in Table B-3 and Table B-4, respectively. Water level and discharge rates at SW3 over the 2016 monitoring period in relation to precipitation events are presented graphically in Figures B-5 and B-6, respectively. During the 2016 monitoring season, surface water temperature at SW3 on the Rice Road tributary showed seasonal temperature fluctuations.

The highest discharge rate calculated from the automated flow velocities and depths for the 2016 monitoring period (31 March to 9 December) was approximately 39 L/s (188 L/s in 2015) at the SWI monitoring station. The average discharge rate, based on the automated measurement rate of ten minutes, was 0.9 L/s (1.2 L/s in 2015). The calculated total discharge over the monitoring period is approximately 70 900 m³ (24800 m³ in 2015).

At downstream station SW3, the highest calculated discharge rate for the 2016 monitoring period (1 April through 9 December 2016) was approximately 39 L/s (134 L/s in 2015) and the average discharge rate was 0.9 L/s (3.6L/s in 2015). The calculated total discharge during the monitoring period is approximately 7 390  $\text{m}^3$  (12860  $\text{m}^3$  in 2015).

The discharge rates recorded at SWI in response to a storm event that occurred from 25 July 2016 are summarized on the following figure.

Figure 3-1 Rice Road Tributary Discharge Hydrograph - 25 July 2016Storm Event


The maximum discharge rate during the storm event was approximately 23 L/s and the lag time (time between the peak precipitation and peak stream discharge) was about 2 hours (the Levelogger is programmed to take measurements every ten minutes).

The larger lag time reflects retention in the storm water management pond (installed in 2014-2015) prior to discharge; in the years prior to installation of the pond, lag times were short with the peaks generally about 10 minutes apart.

The maximum discharge rates during each construction period are summarized in the following table and graph.

Table 3-2 Summary of Maximum Discharges - Rice Road Tributary SWI

| Period                | Date       | Precipitation (mm) |       | Max 1-hour intensity (mm/h) | Maximum<br>Discharge Rate |
|-----------------------|------------|--------------------|-------|-----------------------------|---------------------------|
|                       |            | 1-week<br>Lead-up  | Event | intensity (milling)         | (L/s)                     |
| Pre-Construction      | 2008-07-24 | 32                 | 19.7  | 17.5                        | 263                       |
| Construction          | 2009-08-20 | 0.25               | 57    | 10.25                       | 554                       |
| Post-<br>Construction | 2013-06-10 | 56                 | 41.25 | 23.5                        | 628                       |



# 3.1.1.3 MERRITTVILLE HIGHWAY TRIBUTARY (SW6)

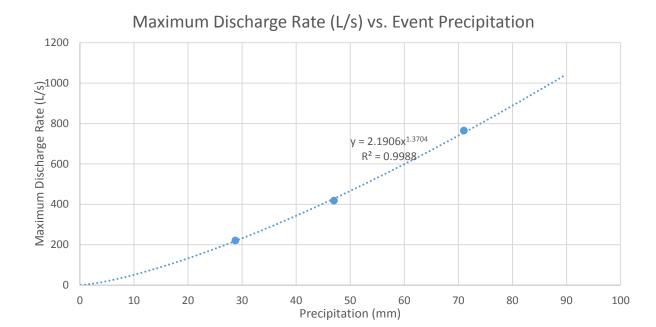

At station SW6, the five-years of post-development monitoring period ended in 2015. The historical results of the automated flow data collection at SW6 are presented on Figure B-6 of Appendix B for reference purposes.

Table B-5 presents a summary of the flow data from SW6 monitoring period in relation to precipitation events. The precipitation events were determined based on regional climatic data from Appendix D.

The results of manual flow measurements, obtained using USGS method, are presented in Table B-6. The discharge rates were calculated from direct measurements of velocity and depth and the fixed dimensions of the concrete storm sewer pipe (92 cm diameter).

Table 3-3 Summary of Maximum Discharge Rates

| Period                | Date           | Precipitation (mm) |       | Max 1-hour intensity (mm/h) | Maximum Discharge Rate |  |
|-----------------------|----------------|--------------------|-------|-----------------------------|------------------------|--|
|                       |                | 1-week<br>Lead-up  |       |                             | (L/s)                  |  |
| Pre-Construction      | 2009-04-<br>04 | 26.75              | 47    | 5.5                         | 418                    |  |
| Construction          | 2010-06-<br>06 | 44.5               | 28.75 | 11.25                       | 221                    |  |
| Post-<br>Construction | 2014-07-<br>28 | 6                  | 71    | 44.75                       | 764.5                  |  |



## 3.1.2 MANUAL SURFACE WATER FLOW

As shown on Table B-6, Appendix B, manual flow measurements were made during each site inspection of the monitoring stations. The results of the flow monitoring are used for calibration purposes, and to refine the empirical relationship between creek stage and discharge at surface water station, SW3.

# 3.1.3 SURFACE WATER TEMPERATURE

In 2016, the surface water temperature was recorded at SW1 and SW3. The results of 2016 temperature logging are shown graphically, on the figures in Appendix B.

In general, the measured temperatures reflect seasonal variations. Ambient temperatures in the pipes between flow events may be 2 to 5 degrees warmer than the recorded atmospheric temperatures but decrease during storm events, with the exception of temperatures recorded at SW3. Surface water temperatures at SW3 are moderated, as the logger is located within the sump of the stilling well, below the creek bed; thus, recorded temperatures at SW3 reflect seasonal surface water temperatures moderated by the temperature in the shallow sub-surface.

# 3.1.4 SURFACE WATER QUALITY

Collection of surface water quality samples was attempted five times during 2004, 2007, 2008, 2009, and 2011, 2013, 2014, 2015, and 2016, four times during 2005, 2006, and 2010, six times in 2012, to coincide with the spring freshet, two dry events and two wet events. Samples were obtained at the following specific weather events:

Table 3-4 Surface Water Sampling Dates

| Year | Spring Freshet | Dry Events<br>(with no precipitation) | Wet Events<br>(with precipitation) |
|------|----------------|---------------------------------------|------------------------------------|
| 2007 |                | 2007-12-05                            | 2007-10-19                         |
| 2008 | 2008-03-27     | 2008-10-31                            | 2008-08-06<br>2008-12-16           |
| 2009 | 2009-04-06     | 2009-02-13<br>2009-09-10              | 2009-06-18<br>2009-12-01           |
| 2010 | 2010-03-09     | 2010-09-03                            | 2010-06-16<br>2010-10-05           |
| 2011 | 2011-06-06     | 2011-03-29<br>2011-09-30              | 2011-06-24<br>2011-11-29           |
| 2012 | 2012-04-25     | 2012-03-15<br>2012-07-27              | 2012-10-10<br>2012-12-05           |
| 2013 | 2013-03-27     | 2013-05-02<br>2013-10-10              | 2013-06-13<br>2013-12-10           |
| 2014 | 2014-03-18     | 2014-04-25<br>2014-09-24              | 2014-06-04<br>2014-12-01           |
| 2015 | 2015-03-12     | 2015-05-13<br>2015-09-30              | 2015-06-09<br>2015-10-29           |
| 2016 | 2016-03-22     | 2016-06-29<br>2016-09-01              | 2016-04-26<br>2016-10-21           |

Water quality results were compared to the Provincial Water Quality Objectives (PWQO) and are presented in Table C-1; Appendix C. Laboratory certificates of analysis for the current reporting period are included in Appendix C.

As presented in the pre-construction monitoring report, existing water quality was generally degraded with respect to concentrations of total phosphorus, *E. coli* bacteria, chloride, TSS, and nitrate. In general, the results of the 2016 analytical testing indicated that:

- Concentrations of total phosphorus generally exceed the PWQO at the sampled surface water monitoring stations.
- Concentrations of E. coli bacteria generally exceed the PWQO at the sampled surface water monitoring stations.
- Chloride and conductivity concentrations were periodically elevated at the sampled surface water monitoring stations, likely due to road runoff.
- Concentrations of TSS are periodically elevated in samples from each water course.
- Concentrations of nitrate are periodically elevated at the sampled surface water monitoring stations, likely due to local agricultural activities.

## 3.1.4.1 CATARACT ROAD TRIBUTARY (SW4 & SW5)

Stations SW4 and SW5 were not sampled in 2016 since the monitoring requirement for these stations ended in 2014. A summary of the historical pre-construction, construction and post-construction results of surface water field and laboratory analyses are included in Table C-1 for reference purposes. Time-concentration graphs of historical parameter concentrations at the Cataract Road Tributary surface monitoring stations are presented in Figure C-1 for reference purposes. Post-development, there has been an increasing trend in chloride, and associated conductivity; a road salt management plan should be established to reduce the road salt entering the stream to pre-development (i.e., pre-2010) concentrations.

# 3.1.4.2 RICE ROAD TRIBUTARY (SW1, SW2 & SW3)

A summary of the pre-construction, construction and post-construction results of surface water field and laboratory analyses are included in Table C-1. Time-concentration graphs of parameter concentrations at the Rice Road Tributary surface monitoring stations are presented in Figure C-2.

Comparing the post-construction phase water quality results from the surface water stations on the Rice Road Tributary to those of the pre-construction phase, the mean concentrations generally were similar; however as seen in Figure C-2, several parameter concentrations were somewhat variable during the construction phases relative to the pre-construction ranges.

Post-construction parameter concentrations in 2016 generally were similar to the pre-construction phase, with the exception of un-ionized ammonia, which has had increasing peak concentrations since 2014. This may be related to on-going construction project in the vicinity of the intersection and Regional Road 20, which includes construction of a storm water management pond that discharges to the Rice Road Tributary. Water quality in the discharge from the storm water management pond should include sampling for un-ionized ammonia; this should be addressed in the environmental compliance approval (ECA) for the pond.

#### 3.1.4.3 MERRITTVILLE HIGHWAY TRIBUTARY (SW6 & SW7)

Stations SW6 and SW7 were not sampled in 2016 since the monitoring requirement for these stations ended in 2015. A summary of the pre-construction, construction, and post-construction results of surface water field and laboratory analyses are included in Table C-1 for reference purposes. Time-concentration graphs of parameter concentrations at the Merrittville Highway Tributary surface monitoring stations are presented in Figure C-3.

# 3.2 EROSION MONITORING RESULTS

Licensed Ontario Land Surveyors (William A. Mascoe Surveying Limited) surveyed the creek reach annually in April from 2007 to April 2016 following the snow melt/spring freshet, using Total Station survey equipment. The creek profile was surveyed at approximately one-metre intervals, including breaks in grade, lowest point, edge of creek, and top of bank. Field benchmarks were established, and the work was completed relative to the Regional Niagara UTM system for future monitoring purposes.

The survey points from 2007 and 2016 are presented on Figures 2 and 3, respectively, with interpreted topographic contours. The survey points have accuracies of three decimal places, but for presentation purposes the contours are presented at one-metre intervals in metres above sea level (mASL).

Figure 4 presents the difference between 2016 and 2007 surveys, identifying areas of either erosion or accretion relative to the original 2007 survey. The differences were interpolated using the ESRI's ArcGIS using the "Topo to Raster" tool which is a technique used to create a hydrologically correct surface. The algorithm used is based on that of ANUDEM (developed by Hutchinson et al at the Australian National University). Between April 2007 and April 2016, the erosion/accretion in the surveyed reach is generally less than 0.5 m, as seen in Figure 4, with small areas of greater erosion/accretion, which may be related to the removal (by others) of the tree canopy in the area or the natural advancement of the stream

meander. Figure 5 presents the difference between 2016 and 2015 survey; during this period, the erosion/accretion in the surveyed reach is generally less than 0.25 m.

# 3.3 CLIMATE DATA

The 5-minute interval climatic data was provided by Regional Niagara's station located at the Town of Pelham offices approximately one kilometre to the southwest. The climate data is included in Appendix D. Precipitation data from the nearest Environment Canada station was used whenever possible. The Regional Niagara Pelham climate station data and the Environment Canada Welland-Pelham data generally agree on total precipitation amounts for 2016.

Normal annual precipitation for the area is approximately 873 mm, based on the 1971-2000 30-Year Normals calculated from Environment Canada climatological station data located at St. Catharines Power Glen (approximately six kilometres north of the study area). St. Catharines Power Glen is the nearest Environment Canada Climatological Station with sufficient data to calculate 30-Year Normals.

There was 646 mm of precipitation received in 2016 in the area, based on the total precipitation measured at the Environment Canada Welland-Pelham climatological station, indicating that 2016 was a below average precipitation year.

# 4 DEVELOPMENT MONITORING PROGRAM

The post-construction monitoring program was initiated at Cataract Road Tributary in October 2009, when Phase I construction had been completed. Phase 2 construction was completed in November 2010, at which point post-construction monitoring at Merrittville Highway Tributary began. Phase 3 construction occurred between April and October 2012, therefore construction phase monitoring at the Rice Road Tributary was completed after October 2012; post-construction monitoring at the Rice Road Tributary was initiated in November 2012.

As of October 2014, the five-year post-construction monitoring period at Phase 1 (SW4 and SW5) had been satisfied. As of October 2015, the five-year post-construction monitoring period at Phase 2 (SW6 and SW7) had been satisfied. As of October 2016, five years of post-construction monitoring has been completed at Phase 3 (SWI and SW3) locations. Thus 5 years of post-construction monitoring has been completed.

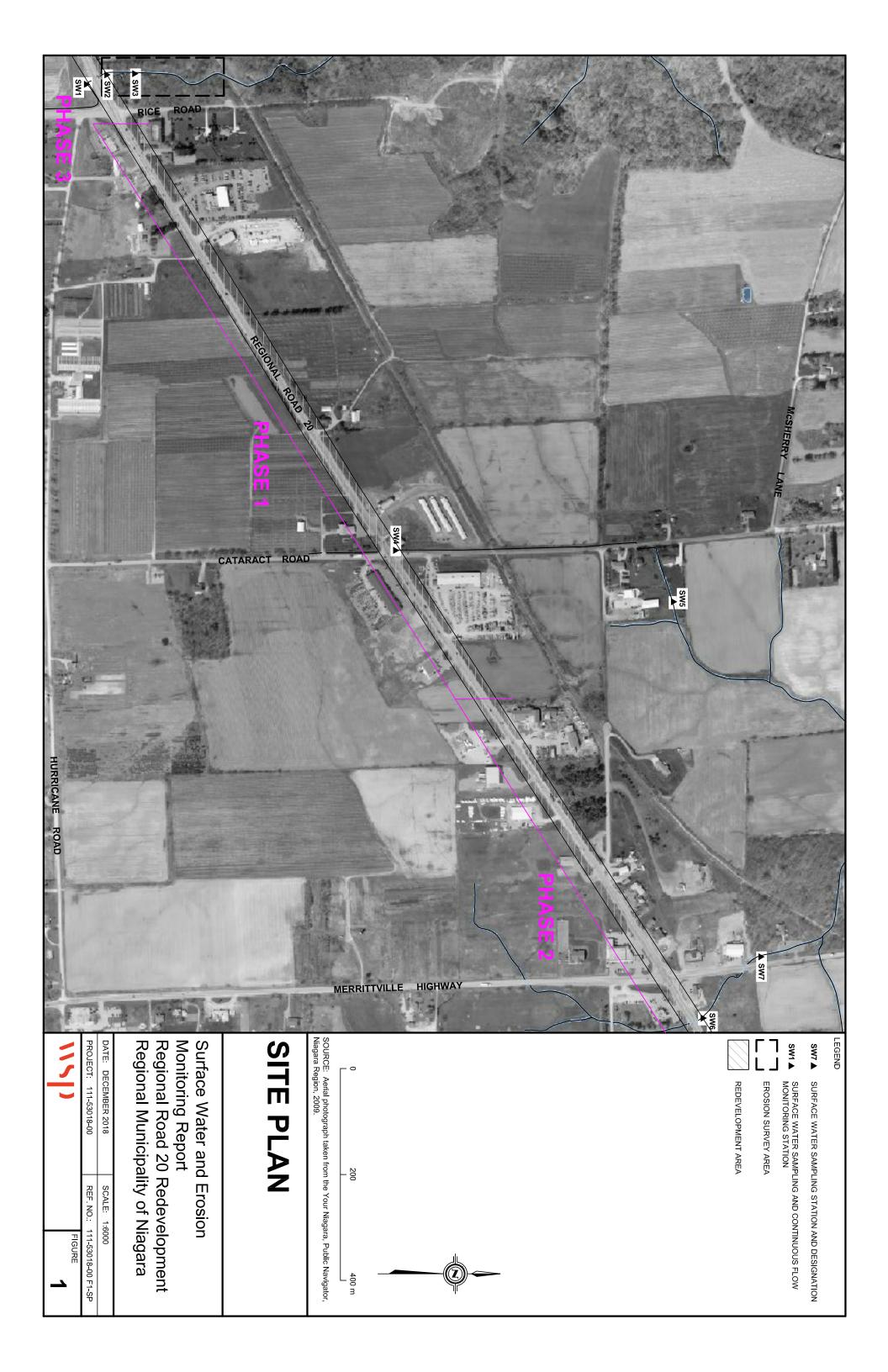
Long-term monitoring reports will be compiled and should be circulated to the NPCA, for review, on an annual basis. This is the final monitoring report.

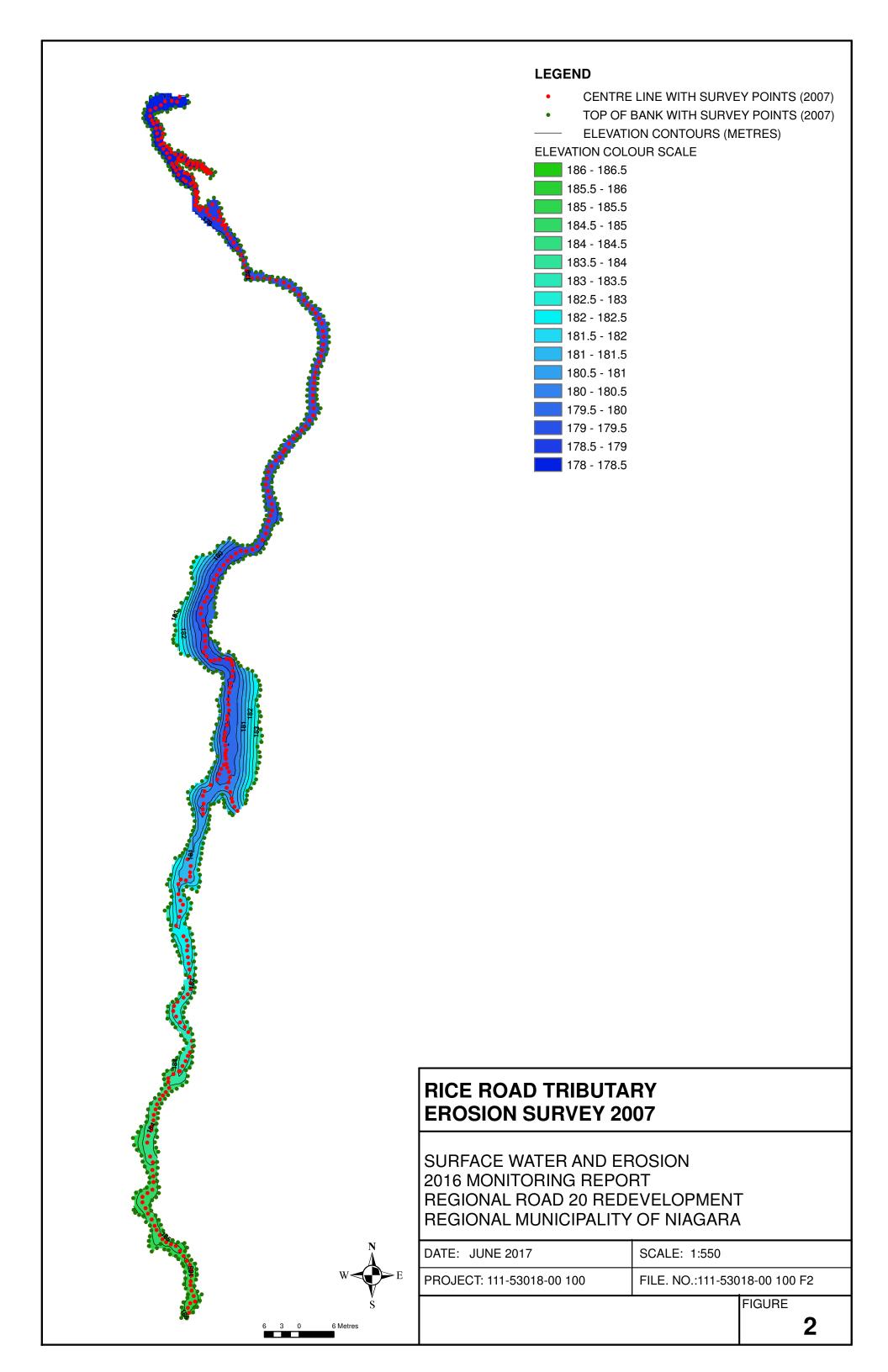
A draft report will be made available to the client for comment, prior to submission to the regulatory agencies. Digital copy of final annual reports will be made available for download by Regional Niagara.

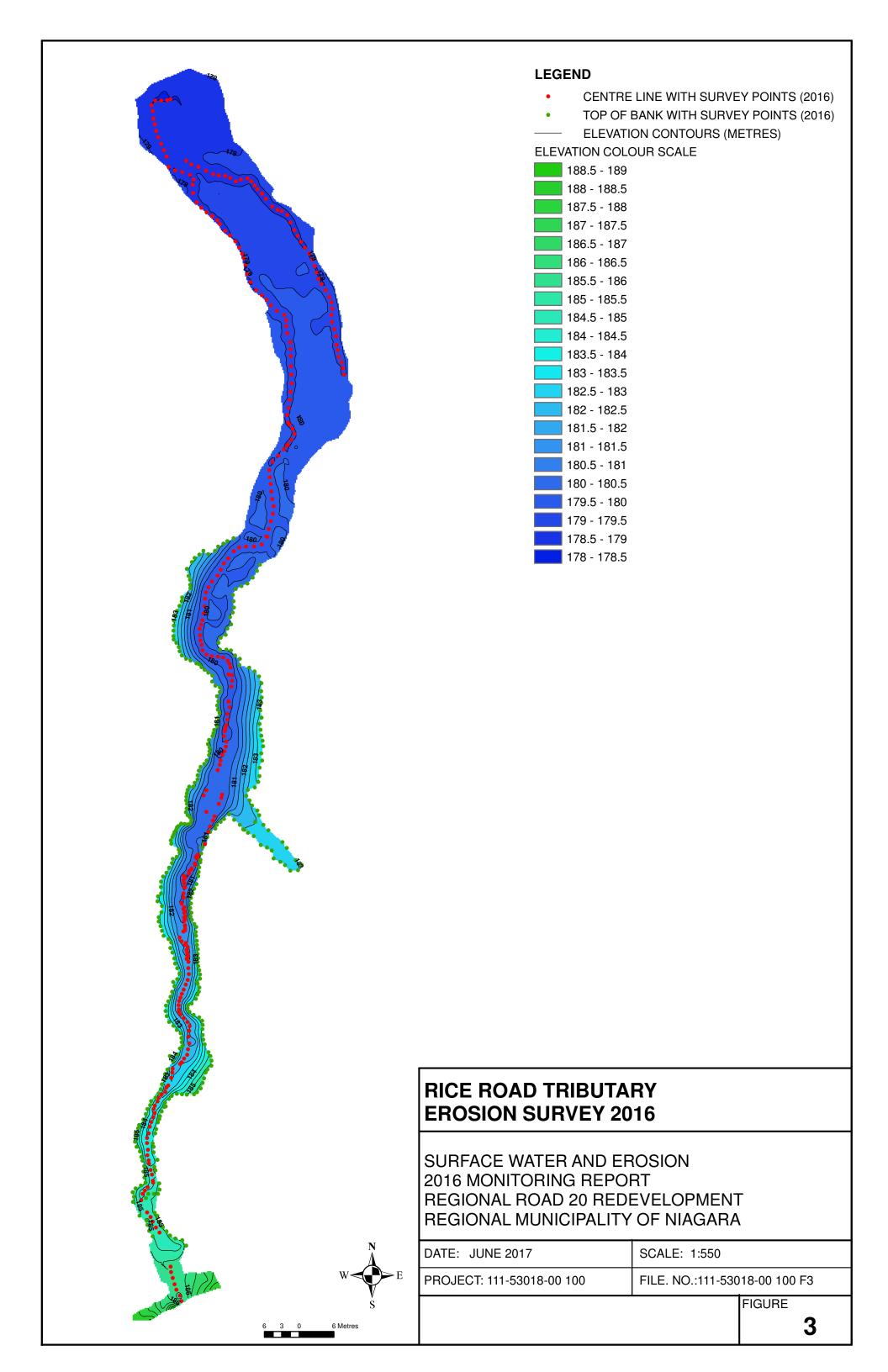
# 5 CONCLUSIONS AND RECOMMENDATIONS

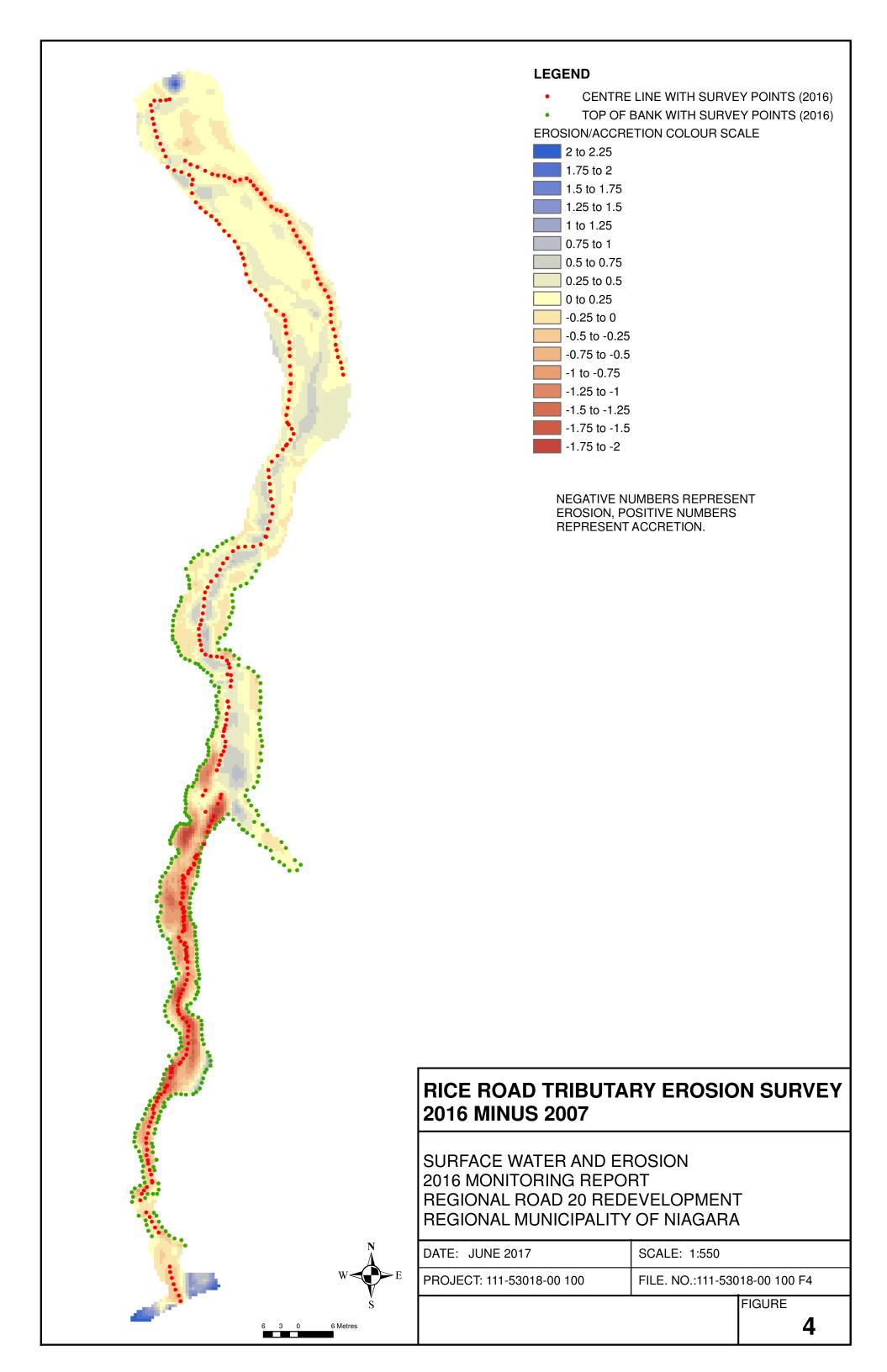
Based on the findings of the monitoring program presented in this report, the following conclusions are provided:

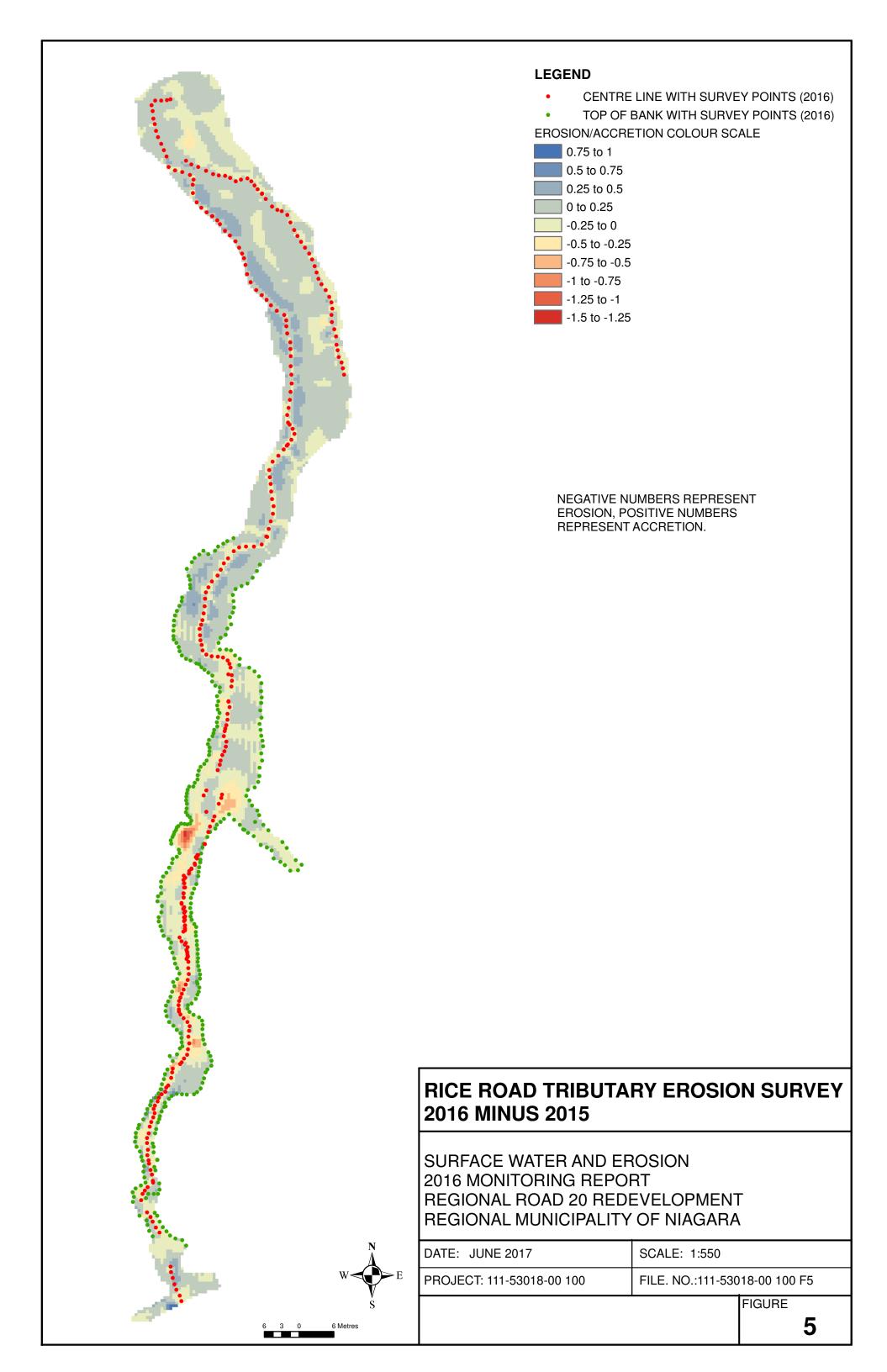
- → In the vicinity of the intersection of Cataract Road and Regional Road 20, surface water and run-off flow north from the culvert (SW4) in the roadside ditch on the west side of Cataract Road until it enters drainage swale (SW5) more than 350 m from the Regional Road 20 intersection and continues on through drainage swales in agricultural fields toward Twelve Mile Creek.
- → In the vicinity of Rice Road, the site drains to Twelve Mile Creek through the Rice Road Tributary. A 1.2 m wide, square, concrete culvert (SW1 at invert, SW2 near evert) drains the area surrounding the intersection of Rice Road and Regional Road 20. The creek then flows into a narrow confined, densely wooded creek channel (SW3) converge with Twelve Mile Creek, downstream.
- → Runoff from the area southeast of the intersection of Merrittville Highway and Regional Road 20 (SW6) flows through a 0.9 m-diameter concrete culvert, eventually crossing beneath Merrittville Highway. Flow enters a natural channel (SW7) soon after and continues toward Twelve Mile Creek.
- → Surface water flow meters at surface water stations SW1, and SW6 collected flow data intermittently for the 2015 monitoring period. The Levelogger at SW3 collected creek stage data successfully for the entire monitoring period.
- Temperatures measured within the channel at SW1 on the Rice Road Tributary, and within the channel at SW6 on the Merrittville Highway reflected seasonal temperature fluctuations of surface water runoff during flow conditions and ambient temperatures when dry. Temperatures recorded at SW3 reflect shallow sub-surface temperatures beneath the streambed.
- → Pre-construction water quality generally was degraded with respect to concentrations of total phosphorus, E. coli bacteria, chloride, TSS, and nitrate in each of the watercourses.
- → Post-construction surface water quality results generally were consistent with the pre-construction results with the following exceptions:
  - At the Cataract Road Tributary:
    - There is an increasing trend in the concentrations of chloride and conductivity
    - Dissolved oxygen has decreased somewhat
    - Concentrations of E. coli have episodic peaks in summer greater that pre-development maxima.
    - Nitrates have decreased (improved)
    - Temperature (relative to ambient air temperature) has decreased somewhat (improved)
  - At the Rice Road Tributary:
    - Chloride and conductivity increased markedly post construction but has decreased since 2014; 2016 concentrations were within pre-construction range
    - Concentrations of un-ionized ammonia at the three sampling locations generally exceeded the pre-construction maxima; an increasing trend since 2014 is observed.
    - Concentrations of E. coli have episodic peaks in summer greater that pre-development maxima.
  - At the Merrittville Highway Tributary:
    - There is an increasing trend in the concentrations of chloride and conductivity


- Concentrations of E. coli have episodic peaks in summer greater that pre-development maxima.
- → Increased conductivity and chloride concentrations relative to pre-construction ranges are generally attributed to an increased total mass of road salt used at the newly-widened roadway. Increased *E.coli* and un-ionized ammonia concentrations relative to pre-construction ranges are attributed to summer seasonal effects (i.e., low water levels and less flow having a concentrating effect).
- → Annual erosion surveys of the Rice Road Tributary were conducted annually in April from 2007 to April 2016. Analysis of the annual change in survey points indicated that annual erosion and accretion at any one point is generally less than 0.5 m.


Based on the findings of the monitoring program, the following recommendations are provided for consideration:


- Post-development monitoring at RR20 may be discontinued.
- → A road salt management plan should be established to reduce the road salt entering the streams to predevelopment (i.e., pre-2010) concentrations.
- → Water quality in the discharge from the storm water management pond at the intersection of RR 20 and Rice Road should include sampling for un-ionized ammonia; this should be addressed in the environmental compliance approval (ECA) for the pond.
- Future considerations:
  - Future monitoring programs designed to monitor the effects of development should consider increased pre-development monitoring to grow the base-line database over a greater range of climatic conditions to improve the comparison of development and post-development conditions. Post-development monitoring, could then be reduced.
  - In development areas where there are significant natural features, the features should have some level of continuous monitoring, rather than project-specific monitoring.


# **6 REFERENCES**


- Chapman, L.J. and D.F. Putnam. 1984. The Physiography of Southern Ontario; Ontario Geological Survey, Special Volume 2, 270 p. Accompanied by Map P.2715 (coloured), scale 1:600 000.
- Feenstra, B.H. 1981. Quaternary Geology and Industrial Minerals of the Niagara-Welland Area, Southern Ontario. Ontario Geological Survey, OFR 5361, 260 p.
- Feenstra, B.H. 1981: Bedrock Topography of the Niagara and Niagara-on-the-Lake Area, Southern Ontario; Ontario Geological Survey Preliminary Map P.2400, Bedrock Topography Series. Scale 1:50 000
- Feenstra, B.H. 1984. Quaternary Geology of the Niagara-Welland Area, Southern Ontario. Ontario Geological Survey, Map 2496, Quaternary Geology Series, Scale 1:50 000.
- Fenco MacLaren Inc. 1995. Port Colborne/Fort Erie Waste Management Master Plan, Summary of EPA Activities Geology/Hydrogeology.
- Telford, P.G., B.A. Liberty, and B.H. Feenstra. 1976. Palaeozoic Geology of the Niagara Area, Southern Ontario. Ontario Division of Mines, Map 2344.
- Waterloo Hydrogeologic Inc. 2005. Niagara Peninsula Conservation Authority Groundwater Study Final Report.
- Vos, M.A. 1969. Drift Thickness of Southern Ontario, Niagara Sheet. Ontario Geological Survey, Preliminary Map No. P.537, Drift Thickness Series, scale 1:50 000.











# APPENDIX

# A TERMS OF REFERENCE



One St. Paul Street, Suite 601 St. Catharines, Ontario, L2R 7L2 Telephone 905-687-1771 Facsimile 905-687-1773 Toll Free 1-800-668-2598

9 August 2007

David MacLeod, C.E.T.
Project Manager
Public Works Department -Transportation Division
Regional Municipality Niagara
2201 St. David's Road
P.O. Box 1042
Thorold, Ontario,
Canada
L2V 4T7

Dear Mr. MacLeod:

Re: Surface Water Work Program (Revised 9 August 2007)

Regional Municipality of Niagara

Regional Road 20 (Station Street to Highway 406) Redevelopment

File 1070359.00

The work program has been revised based on discussion with Mr. Steve Miller at Niagara Peninsula Conservation Authority on 9 August 2007 regarding clarification of erosion monitoring and surface water sampling locations.

#### 1.0 PROJECT UNDERSTANDING

It is understood that Regional Road 20 will be redeveloped between Station Street and Highway 406 in Pelham and Thorold.

#### 2.0 SCOPE OF WORK

This work program addresses the need for hydrologic monitoring with respect to storm water discharge to Twelve Mile Creek tributaries.

The Niagara Peninsula Conservation Authority (NPCA) staff have indicated that the monitoring requirements for this site will be the same as for the Chestnut Ridge Development, located on Regional Road 20, on the west side of Fonthill. NPCA's recent evaluation of the long-term monitoring program for the Chestnut Ridge Phase I site indicated that the monitoring undertaken was adequate. The program proposed here is based upon that program.

The Sub-watershed and Environmental Impact Statement prepared for Pelham Area 1 (TSH, 2003) outlined monitoring requirements to provide for the evaluation of conditions for pre-, during and



post-development periods. This letter is intended to outline the details for monitoring including location, frequency and timing.

The monitoring requirements are divided into three types:

- Water Quality
- Surface Water Flow
- Erosion

#### 3.0 SURFACE WATER MONITORING PROGRAM

#### 3.1 SURFACE WATER QUALITY MONITORING

#### **Monitoring Stations**

- 1. Regional Road 20, at Rice Road, south side of culvert
- 2. Regional Road 20, at Rice Road, north side of culvert
- 3. Rice Road Tributary to Twelve Mile Creek, approximately 30m downstream of Regional Road 20, within the natural channel
- 4. Regional Road 20, at Cataract Road, culvert outfall
- 5. Cataract Road tributary, approximately 30m downstream of Cataract Road, within the natural channel
- 6. Regional Road 20, at Merrittville Highway, culvert outfall
- 7. Regional Road 20, at Merrittville Highway, approximately 30m downstream of Regional Road 20

#### Frequency of Sampling

Annual Monitoring (spot sampling):

It is proposed that sampling be carried out annually and flow conditions noted for the sites chosen for the following:

- Spring runoff with melting snow. Obtain samples at all sites.
- Two dry period samples samples are to be taken at all three sites. Because of a potential for lack of base flow, at least one sample should be taken in early spring.
- Two storm events, preferably thunderstorms or after significant rain in a frontal storm. Take samples at all three sites or record of lack of flow if no sample possible.

Flow should be measured whenever sample is taken at each site.

#### Parameters to Sample

General water quality parameters to include:

- Total suspended solids
- Total phosphorus
- Total Kjeldahl nitrogen, ammonia nitrogen, nitrite plus nitrate nitrogen
- BOD5
- Chloride
- E.coli.



• Temperature, pH, conductivity, DO (field parameters)

#### 3.2 FLOW MONITORING (INCLUDING TEMPERATURE)

#### **Monitoring Locations:**

- Regional Road 20, at Rice Road, south side of culvert
- Rice Road Tributary to Twelve Mile Creek, approximately 30m downstream of Regional Road 20, within the natural channel
- Regional Road 20, culvert at Cataract Road
- Regional Road 20, culvert at Merrittville Highway

#### Frequency, Parameters

First year – continuous gauge at all locations (10 min interval) on a seasonal basis (including temperature probe). Duration - March to November (weather, specifically temperature, permitting).

Second year – Modify to reduce dry period monitoring, if encountered.

#### 4.0 EROSION MONITORING PROGRAM

#### 4.1 MONITORING SECTIONS

• Twelve Mile Creek, Rice Road tributary north from Regional Road 20 for approximately 150m downstream to the former railway.

#### 4.2 EROSION SURVEY PARAMETERS

#### **Annual Monitoring:**

- Survey on cross-section at minimum 1m intervals, obtaining, as well, any break in grade including lowest point, edge of creek and top of bank.
- Profile at 1m intervals of lowest point (drainage/stream invert) for the reach length.
- Survey to be tied into UTM NAD83.
- Total station equipment to be used.

#### 5.0 REPORTING

The results of the surface water monitoring program and the erosion monitoring program will be summarised in an annual report.



#### **Pre-Construction**

The intent of the Year 1 Tasks and Report is to provide baseline data with respect to existing surface water flows, surface water quality and erosion within the receiving watercourse prior to construction at the site. A full year of monitoring shall be completed prior to the initiation of construction. This information will be compared to post-development data in order to determine if the proposed stormwater management strategy is functioning as designed.

#### **Monitoring During Construction**

NPCA will require monthly sediment control inspection reports, circulated to NPCA and the Town of Pelham for review. The sediment control inspection reports will include:

- A description and photograph of all physical sediment control measures
- Commentary on the condition of all sediment control measures, including after all major storm events, including photographs.
- Commentary on all deficient controls, and the specified repair or replacement.
- Proposed measures to avoid the long-term exposure of soil.

Sediment control monitoring and reporting will be undertaken by on-site construction personnel. Therefore, costs for sediment control monitoring during construction have not been included in the estimate.

#### **Post-Development Monitoring**

Prior to construction, a post-development monitoring plan will be submitted to NPCA for review and approval. The long-term monitoring reports will be compiled and circulated to the NPCA for review and approval. A final post-construction monitoring report will be prepared after the completion of five full years of monitoring. This report will also be circulated to the NPCA for approval.

A 'draft' report will be made available to the client for comment, prior to submission to the regulatory agencies. Two copies of final annual reports will be provided to Regional Niagara.

#### 6.0 PROJECT COSTS

Estimated costs for Year 1 and subsequent years (Year 2 & 3 shown) are provided in the following tables. Costs assume that this work is undertaken in conjunction with monitoring program underway at Rice Road tributary. All costs are exclusive of GST.

| Year 1 Tasks               | Professional<br>Fees | Disbursements | Laboratory and<br>Contractor Fees | Totals |
|----------------------------|----------------------|---------------|-----------------------------------|--------|
| SW Monitoring Program      | 18700                | 12900         | 2700                              | 34300  |
| Erosion Monitoring Program | 4300                 | 100           | 6400                              | 10800  |
| TOTALS                     | 23000                | 13000         | 9100                              | 45100  |



One-time costs included in this estimate include set-up of the surface water flow stations and equipment purchases. The equipment, which will continue to be utilised throughout the long-term monitoring program includes: two American Sigma AV910 flowmeters at \$5685 each; and two Tidbit temperature loggers at \$150 each. Purchase of the equipment is the best option as rental fees for the monitoring equipment equals the purchase price after approximately 3 months.

A contingency cost of approximately \$27000 per year for pre-construction monitoring should be included in order to continue the pre-construction monitoring program to the actual time that construction commences at the site, should construction not begin immediately after the Year 1 program.

| Year 2 & 3 Tasks                 | Professional<br>Fees | Disbursements | Laboratory and Contractor Fees | Total |
|----------------------------------|----------------------|---------------|--------------------------------|-------|
| Surface Water Monitoring Program | 14800                | 900           | 2700                           | 18400 |
| Erosion Monitoring Program       | 3400                 | 200           | 4600                           | 8200  |
| TOTALS                           | 18200                | 1100          | 7300                           | 26600 |

Included in the cost estimates for subsequent years is an annual calibration of the flow meters by Can-Am Instruments in their laboratory.

The costs to attend meetings at the request of the client/regulatory agency are not included in this cost estimate and shall be billed as extra at standard rates.

We trust this information is sufficient for your current purposes. If you have any questions or require further information, please call.

Yours truly JAGGER HIMS LIMITED

C.W. Bailey Walters, M.Sc., P.Geo. Project Hydrogeologist

Page 6 Regional Municipality of Niagara 9 August 2007



### 7.0 REFERENCES

Niagara Peninsula Conservation Authority. 2005. Regional Groundwater Study.

Totten Sims Hubicki. 2003. Sub-Watershed and Environmental Impact Statement prepared for Pelham Area 1.

### **APPENDIX**

# B SURFACE WATER FLOW DATA

Data tables are not included in this report. Data tables can be provided upon request.

Figure B-1 - Cataract Road Tributary Flow Monitoring and Precipitation

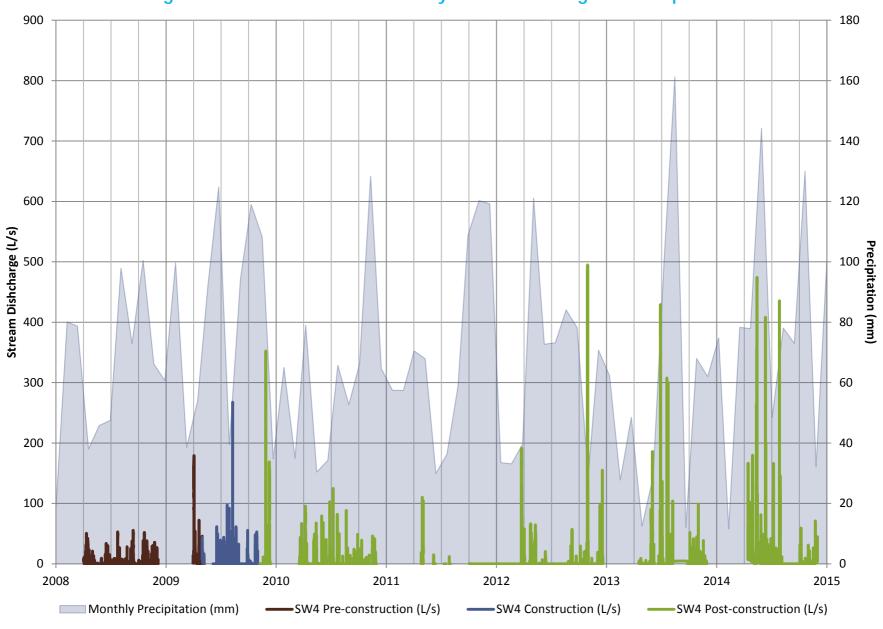



Figure B-2 - Rice Road Tributary Flow Monitoring and Precipitation

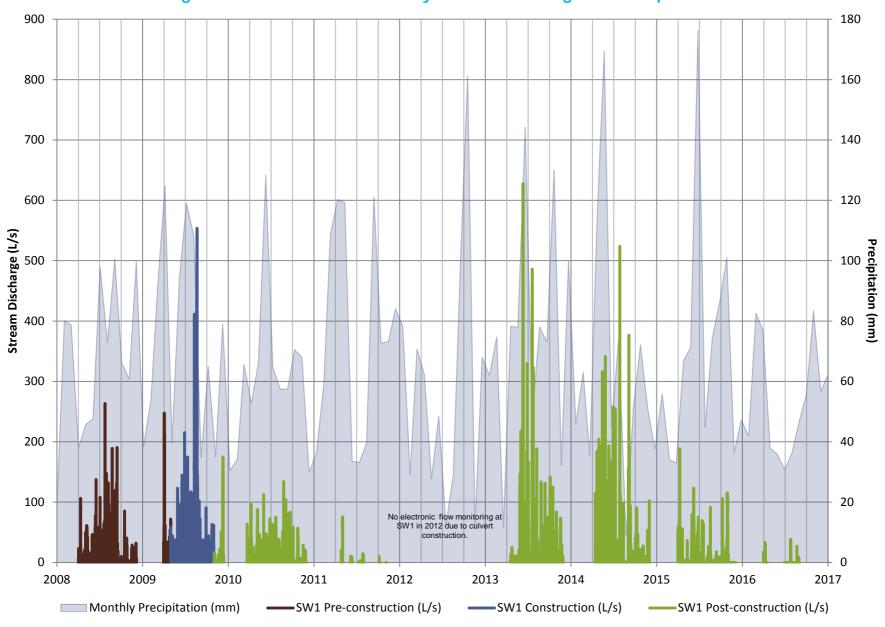



FIGURE B-3
SW1 AUTOMATED AND MANUAL FLOW MEASUREMENTS
REGIONAL ROAD 20 REDEVELOPMENT




Figure B-4 - Rice Road Tributary Flow Monitoring and Precipitation

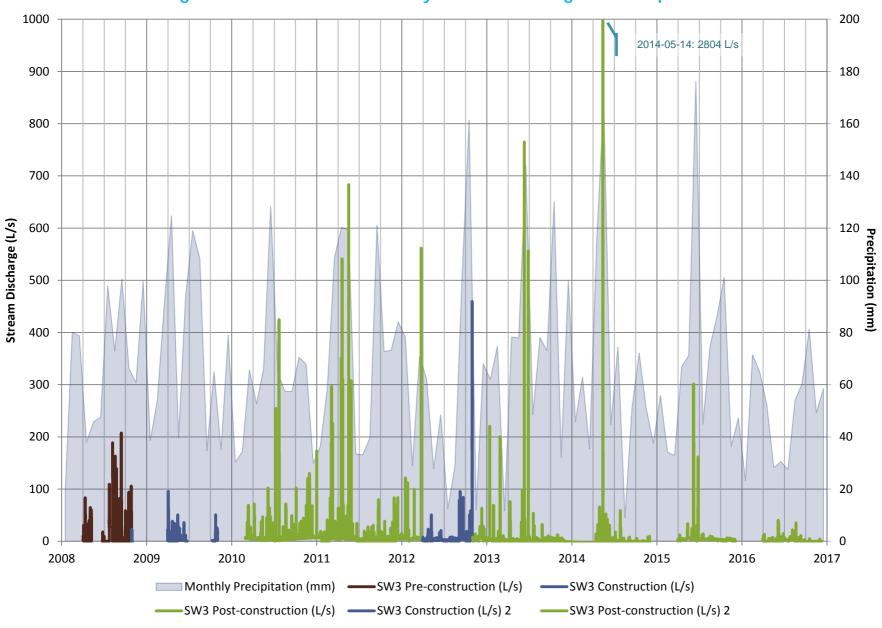



FIGURE B-5
SW3 AUTOMATED AND MANUAL FLOW MEASUREMENTS
REGIONAL ROAD 20 REDEVELOPMENT

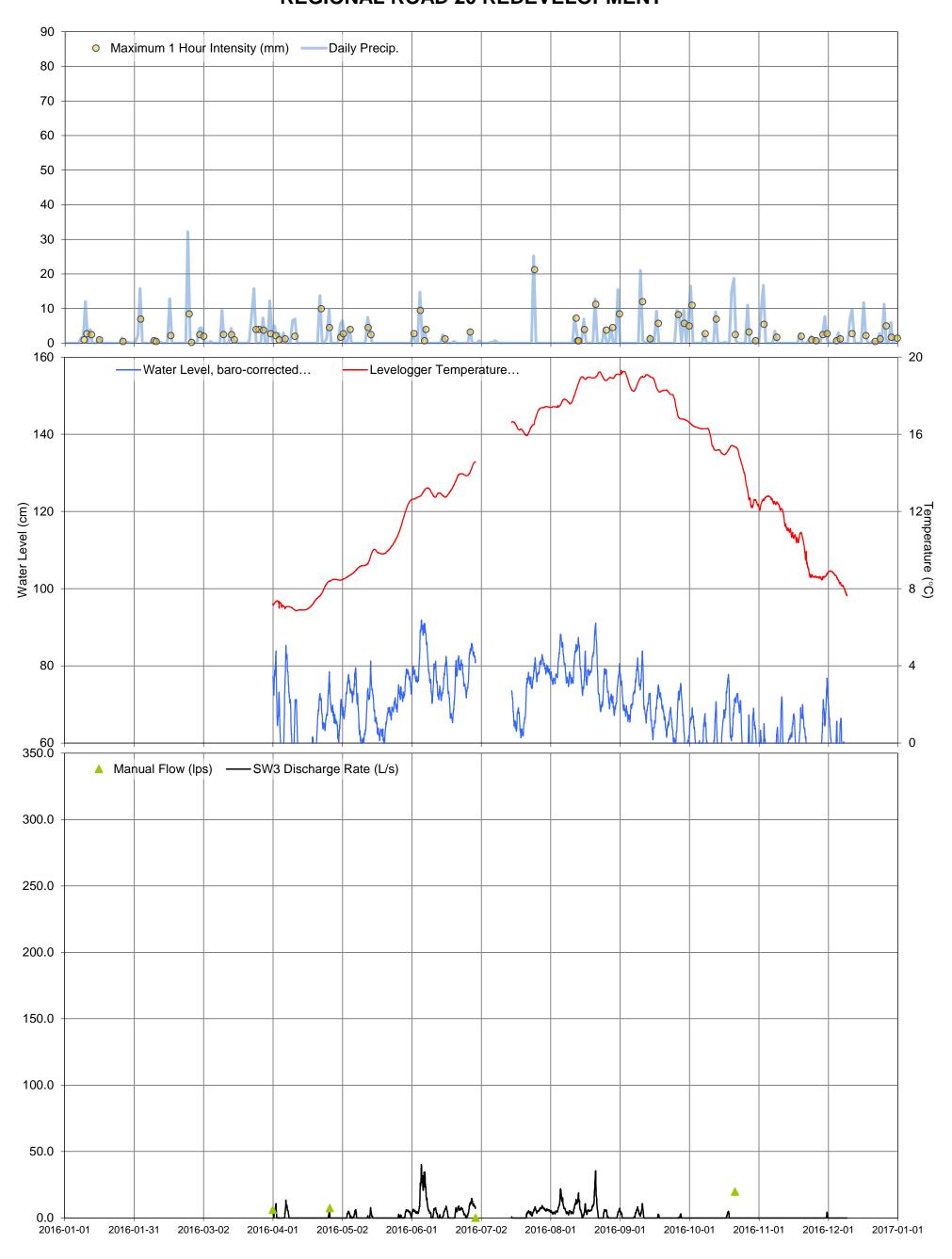
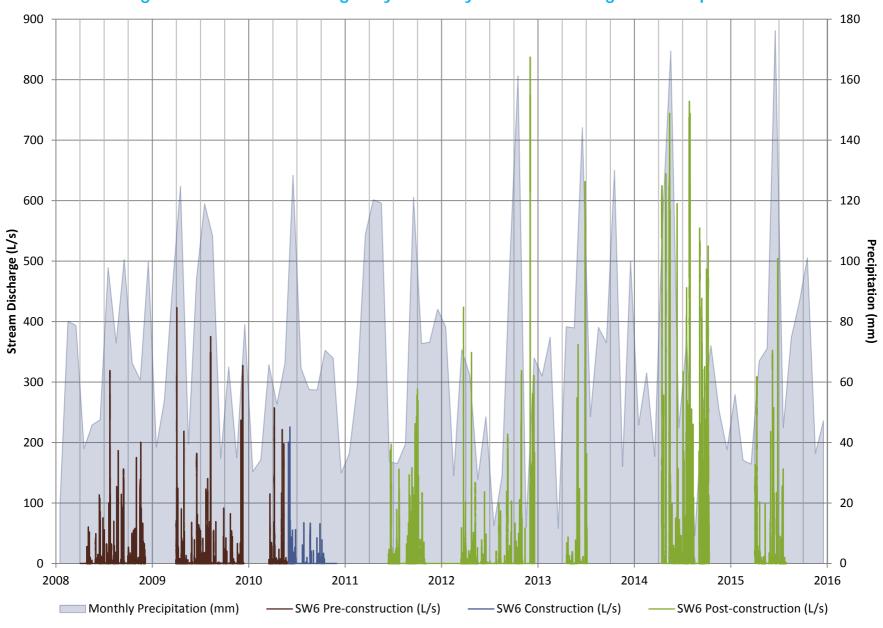




Figure B-6 - Merrittville Highway Tributary Flow Monitoring and Precipitation



### **APPENDIX**

# SURFACE WATER QUALITY DATA

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|            | SW1                                              | SW1                                                                                                                                                                                                      | SW1                                                                                                                                                                                                                                                                                                                                      | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SW1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Rice Rd.                                         | Rice Rd.                                                                                                                                                                                                 | Rice Rd.                                                                                                                                                                                                                                                                                                                                 | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Rice Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|            | 2007-10-19                                       | 2007-12-05                                                                                                                                                                                               | 2008-03-27                                                                                                                                                                                                                                                                                                                               | 2008-08-06                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2008-10-31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2008-12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2008-12-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2009-02-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2009-04-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2009-06-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Wet                                              | Dry                                                                                                                                                                                                      | Freshet                                                                                                                                                                                                                                                                                                                                  | Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Freshet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | Pre-Construction                                 | Pre-Construction                                                                                                                                                                                         | Pre-Construction                                                                                                                                                                                                                                                                                                                         | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Pre-Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|            |                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 292.2                                            | 265.3                                                                                                                                                                                                    | 275.1                                                                                                                                                                                                                                                                                                                                    | 295.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 283.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 266.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 266.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 271.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 274.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 287.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.5 - 8.5  | 7.5                                              | 8.5                                                                                                                                                                                                      | 6.8                                                                                                                                                                                                                                                                                                                                      | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 920                                              | 2450                                                                                                                                                                                                     | 138                                                                                                                                                                                                                                                                                                                                      | 887                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1881                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| >5 to >8   | 12.5                                             | 16.7                                                                                                                                                                                                     | 14.4                                                                                                                                                                                                                                                                                                                                     | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 19.3                                             | 6.1                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                                                                                                                                                      | 24.2                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| calculated | 5.4                                              | 6.9                                                                                                                                                                                                      | 7.2                                                                                                                                                                                                                                                                                                                                      | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | slightly cloudy                                  | clear                                                                                                                                                                                                    | yellow-brown                                                                                                                                                                                                                                                                                                                             | clear                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yellow-brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | yellow-brown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | slightly cloudy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            |                                                  |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6.5 - 8.5  | 7.7                                              | 7.7                                                                                                                                                                                                      | 7.7                                                                                                                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|            | 0.36                                             | 0.33                                                                                                                                                                                                     | 0.52                                                                                                                                                                                                                                                                                                                                     | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | < 0.02                                           | <0.02                                                                                                                                                                                                    | 0.11                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.02       | <0.0003                                          | <0.001                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                    | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | 0.0100                                           | 0.01                                                                                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <0.10                                            | 1.13                                                                                                                                                                                                     | 0.28                                                                                                                                                                                                                                                                                                                                     | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | <0.10                                            | <0.10                                                                                                                                                                                                    | <0.10                                                                                                                                                                                                                                                                                                                                    | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | =                                                | =                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 100        | <b>560</b>                                       |                                                                                                                                                                                                          | 234                                                                                                                                                                                                                                                                                                                                      | <b>470</b>                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1650</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <mark>180</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>740</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | 1                                                | <1                                                                                                                                                                                                       | 3                                                                                                                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 57                                               | 330                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                                                                                                                       | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.03       | 0.07                                             | <0.01                                                                                                                                                                                                    | 0.63                                                                                                                                                                                                                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | 4                                                | 2                                                                                                                                                                                                        | 91                                                                                                                                                                                                                                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 6.5 - 8.5  >5 to >8  calculated  6.5 - 8.5  0.02 | Rice Rd. 2007-10-19 Wet  Pre-Construction  292.2 6.5 - 8.5 7.5 920 >5 to >8 12.5 19.3 calculated 5.4 slightly cloudy  6.5 - 8.5 7.7 0.36 <0.02 0.02 0.02 0.02 0.010 <0.10 <0.10 - 100 560 1 57 0.03 0.07 | Rice Rd. Rice Rd. 2007-10-19 2007-12-05 Wet Dry Pre-Construction Pre-Construction  292.2 265.3 6.5 - 8.5 7.5 8.5 920 2450 >5 to >8 12.5 16.7 19.3 6.1 calculated 5.4 6.9 slightly cloudy clear  6.5 - 8.5 7.7 7.7 0.36 0.33 <0.02 <0.02 0.02 <0.002 0.010 0.010 0.0100 0.01 <0.10 1.13 <0.10 <0.10 - 100 560 1 <1 57 330 0.03 0.07 <0.01 | Rice Rd. 2007-10-19 2007-12-05 2008-03-27 Wet Dry Freshet  Pre-Construction Pre-Construction Pre-Construction  292.2 265.3 275.1 6.5 - 8.5 7.5 8.5 6.8 920 2450 138 >5 to >8 12.5 16.7 14.4 19.3 6.1 3.4 calculated 5.4 6.9 7.2 slightly cloudy clear yellow-brown  6.5 - 8.5 7.7 7.7 7.7 0.36 0.33 0.52 <0.02 <0.02 0.11 0.02 <0.0003 <0.001 0.000 0.0100 0.01 0.11 <0.10 1.13 0.28 <0.10 <0.10 <0.10 100 560 234 1 <1 3 57 330 16 0.03 0.07 <0.01 0.63 | Rice Rd.   Rice Rd.   Rice Rd.   Rice Rd.   2007-10-19   2007-12-05   2008-03-27   2008-08-06   Wet   Dry   Freshet   Wet   Pre-Construction   P | Rice Rd.         2007-10-19         2007-12-05         2008-03-27         2008-08-06         2008-10-31           Wet         Dry           Pre-Construction           292.2         265.3         Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Colspan="6">Co | Rice Rd.         2007-10-31         2008-12-16         2008-03-27         2008-08-06         2008-10-31         2008-12-16         Wet         Dry         Wet         Wet         Dry         Ros         66.8         A.7         7.7         7.3         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         8.0         9.0         9.0         9.0         9.0 | Rice Rd.   2007-10-19   2007-12-05   2008-03-27   2008-08-06   2008-10-31   2008-12-16   2008-12-16   Wet   Dry   Wet   DUP   Pre-Construction   Pre-Const | Rice Rd.         2007-10-19         2007-12-05         2008-03-27         2008-08-06         2008-10-31         2008-12-16         2009-02-13         2009-02-13         Wet         DUP         Dry         Pre-Construction         Pre-Construct | Rice Rd.         2007-10-10 2007-12-10 2008-03-27 2008-08-06 2008-10-31 2008-12-16 2008-12-16 2009-02-13 2009-02-13 2009-04-06 Wet         Dry         Fre-Construction         Fre-Cons |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW1             | SW1                  | SW1             | SW1          | SW1          | SW1          | SW1               | SW1               | SW1               | SW1               |
|----------------------------------------|------------|-----------------|----------------------|-----------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.        | Rice Rd.             | Rice Rd.        | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          |
|                                        |            | 2009-09-10      | 2009-12-01           | 2010-03-09      | 2010-06-16   | 2010-09-03   | 2010-10-05   | 2011-03-29        | 2011-06-06        | 2011-06-24        | 2011-09-30        |
| Event Type                             |            | Dry             | Wet                  | Freshet         | Wet          | Dry          | Wet          | Dry               | Freshet           | Wet               | Dry               |
| Event Phase                            |            | Construction    | Construction         | Construction    | Construction | Construction | Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |                 |                      |                 |              |              |              |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 291.6           | 278.1                | 277.1           | 293.0        | 294.8        | 282.2        | 271.4             | 292.2             | 292.4             | 286.2             |
| pH (unitless)                          | 6.5 - 8.5  | <b>8.5</b>      | 8.8                  | 7.4             | 8.0          | 8.9          | 7.6          | 8.9               | 8.0               | 7.9               | 8.0               |
| Conductivity (µS/cm)                   |            | 499             | 1133                 | 178             | 860          | 800          | 414          | 1300              | 1500              | 1017              | 595               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 9.2             | 23.2                 |                 | 13.1         | 17.1         | 9.5          | 7.8               | 12.7              | 6.4               | 7.1               |
| Temperature (°C)                       |            | 23.9            | 9.1                  | 2.7             | 25.8         | 27.6         | 14.3         | 7.6               | 22.6              | 18.7              | 16.2              |
| Temperature-based DO objective*        | calculated | 4.9             | 6.5                  | 7.3             | 4.7          | 4.6          | 5.9          | 6.7               | 5.0               | 5.4               | 5.7               |
| Appearance                             |            | clear to cloudy | clear and colourless | clear yellowish | clear        | Clear        | light yellow | Clear yellowish   | clear             | clear             | cloudy            |
| LABORATORY ANALYSES                    |            |                 |                      |                 |              |              |              |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 8.1             | 8.5                  | 7.5             | 8.1          | 8.4          | 7.8          | 8.2               | 8.2               | 7.8               | 7.0               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.52            | <0.10                | 0.61            | 0.57         | 1.77         | 0.38         | 0.32              | 0.21              | 0.59              | 0.48              |
| Total Ammonia (as N)                   |            | 0.02            | <0.02                | 0.05            | <0.02        | <0.02        | 0.06         | <0.02             | <0.02             | 0.03              | 0.05              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.003           | <0.002               | 0.000           | <0.001       | <0.007       | 0.001        | 0.002             | 0.001             | 0.001             | 0.001             |
| Total Ammonia (as N, for calculations) |            | 0.02            | 0.01                 | 0.05            | 0.01         | 0.01         | 0.06         | 0.01              | 0.01              | 0.03              | 0.05              |
| Nitrate (as N)                         |            | <0.10           | 0.33                 | 0.22            | 0.24         | <0.10        | 0.20         | 0.73              | 0.27              | 0.45              | 0.44              |
| Nitrite (as N)                         |            | <0.10           | <0.10                | <0.10           | <0.10        | <0.10        | <0.10        | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            | =               | -                    | -               | =            | -            | -            | -                 | -                 | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100        | 24              | 1                    | 10              | <b>140</b>   | 180          | 12300        | 5                 | <b>700</b>        | <b>340</b>        | <b>730</b>        |
| Total BOD <sub>5</sub>                 |            | <1              | <1                   | 3               | 2            | 11           | 1            | <1                | 2                 | 2                 | 4                 |
| Chloride                               |            | 56              | 138                  | 25              | 172          | 128          | 58           | 221               | 301               | 177               | 86                |
| Total Phosphorus                       | 0.03       | 0.19            | 0.03                 | 0.32            | 0.05         | 0.39         | 0.09         | 0.07              | 0.06              | 0.03              | 0.15              |
| Total Suspended Solids                 |            | 23              | 11                   | 152             | 15           | 281          | 28           | 15                | 158               | 11                | 79                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW1               | SW1               | SW1          | SW1             | SW1          | SW1               | SW1               | SW1               | SW1               | SW1               |
|----------------------------------------|------------|-------------------|-------------------|--------------|-----------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          | Rice Rd.          | Rice Rd.     | Rice Rd.        | Rice Rd.     | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          |
|                                        |            | 2011-11-29        | 2012-03-15        | 2012-04-25   | 2012-07-27      | 2012-10-10   | 2012-12-05        | 2013-03-27        | 2013-05-02        | 2013-06-13        | 2013-10-10        |
| Event Type                             |            | Wet               | Dry               | Freshet      | Wet             | Dry          | Wet               | Freshet           | Dry               | Wet               | Dry               |
| Event Phase                            |            | Post-Construction | Post-Construction | Construction | Construction    | Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |                   |                   |              |                 |              |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 279.4             | 285.5             | 279.5        | 296.3           | 282.1        | 274.0             | 276.6             | 289.6             | 289.7             | 285.7             |
| pH (unitless)                          | 6.5 - 8.5  | 8.2               | 7.9               | 8.1          | 7.6             | 8.1          | 7.8               | 8.2               | 8.2               | 7.5               | 7.3               |
| Conductivity (µS/cm)                   |            | 171               | 1490              | 1147         | 1418            | 740          | 1538              | 1715              | 2060              | 452               | 1630              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 11.1              | 2.5               | 9.1          | <b>4.6</b>      | 7.2          | 8.2               | 12.3              | 11.0              | 11.7              | 8.5               |
| Temperature (°C)                       |            | 7.1               | 5.9               | 14.1         | 23.7            | 12.9         | 6.3               | 7.0               | 11.0              | 17.0              | 13.9              |
| Temperature-based DO objective*        | calculated | 6.8               | 6.9               | 5.9          | 4.9             | 6.0          | 6.9               | 6.8               | 6.3               | 5.6               | 5.9               |
| Appearance                             |            | brownish          | slightly cloudy   | cloudy       | slightly yellow | cloudy brown | Clear             | Clear             | Clear             | Cloudy Brown      | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |              |                 |              |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.6               | 8.0               | 8.0          | 7.6             | 7.3          | 7.8               | 8.2               | 8.2               | 7.7               | 8.1               |
| Total Kjeldahl Nitrogen (TKN)          |            | 1.12              | 0.29              | 1.02         | 0.8             | 0.98         | 0.58              | 0.18              | 0.21              | 1.9               | 0.28              |
| Total Ammonia (as N)                   |            | 0.05              | <0.02             | <0.02        | 0.07            | 0.23         | <0.02             | <0.02             | 0.04              | 0.59              | <0.02             |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001             | 0.000             | 0.001        | 0.001           | 0.006        | 0.000             | 0.000             | 0.001             | 0.006             | 0.000             |
| Total Ammonia (as N, for calculations) |            | 0.05              | 0.01              | 0.01         | 0.07            | 0.23         | 0.01              | 0.01              | 0.04              | 0.59              | 0.01              |
| Nitrate (as N)                         |            | 0.28              | 0.20              | 0.64         | 0.46            | 0.66         | 0.68              | 0.81              | 1.26              | 17.00             | 1.10              |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10        | <0.10           | <0.10        | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            | -                 | =                 | =            | -               | -            | =                 |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | 217               | 54                | 90           | 92              | 690          | 50                | 910               | 0                 | 1090              | 73                |
| Total BOD <sub>5</sub>                 |            | 4                 | 2                 | 3            | 4               | 5            | 5                 | 1                 | <1                | 2                 | <1                |
| Chloride                               |            | 9                 | 308               | 177          | 129             | 51           | 235               | 342               | 364               | 21                | 252               |
| Total Phosphorus                       | 0.03       | 0.32              | 0.04              | 0.17         | 0.11            | 0.27         | 0.07              | <0.01             | 0.01              | 0.65              | 0.03              |
| Total Suspended Solids                 |            | 88                | 11                | 68           | 77              | 51           | 39                | 3                 | 4                 | 65                | 12                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

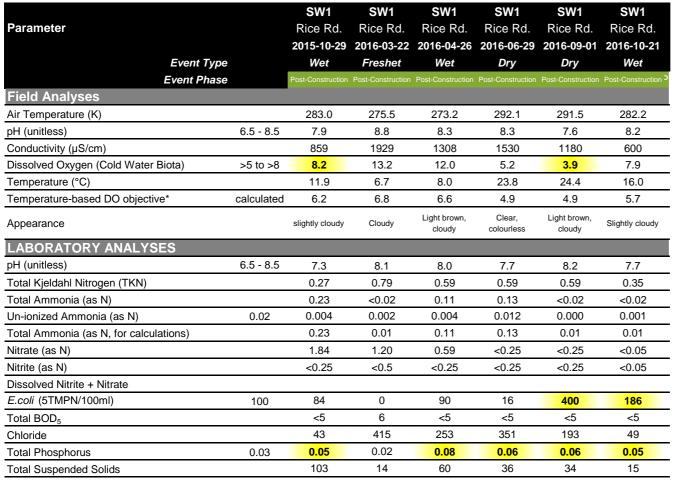
#### **Surface Water Quality**

## wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW1               |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          |
|                                        |            | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-06-04        | 2014-09-24        | 2014-12-01        | 2015-03-12        | 2015-05-13        | 2015-06-09        | 2015-09-30        |
| Event Type                             |            | Wet               | Freshet           | Dry               | Wet               | Dry               | Wet               | Freshet           | Dry               | Wet               | Dry               |
| Event Phase                            |            | Post-Construction |
| Field Analyses                         |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 267.9             | 273.0             | 283.1             | 288.5             | 288.7             | 273.9             | 272.2             | 273.2             | 289.7             | 285.9             |
| pH (unitless)                          | 6.5 - 8.5  | 7.7               | 7.6               | 8.3               | 7.4               | 7.6               | 7.7               | 7.4               | 7.7               | 8.4               | 7.7               |
| Conductivity (µS/cm)                   |            | 3340              | 4540              | 2860              | 2080              | 1571              | 2740              | 3120              | 1631              | 1626              | 376               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 7.8               | 11.8              | 11.0              | 9.7               | 9.3               | 8.6               | 11.0              | 10.4              | 8.2               | 3.4               |
| Temperature (°C)                       |            | 4.3               | 3.1               | 8.5               | 16.7              | 15.0              | 2.1               | 0.4               | 11.9              | 17.8              | 16.2              |
| Temperature-based DO objective*        | calculated | 7.1               | 7.3               | 6.6               | 5.6               | 5.8               | 7.4               | 7.7               | 6.2               | 5.5               | 5.7               |
| Appearance                             |            | Clear             | Cloudy brown      | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.9               | 7.7               | 8.1               | 7.9               | 7.7               | 7.8               | 7.5               | 7.6               | 7.7               | 8.1               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.71              | 0.33              | 0.29              | 0.41              | 0.31              | 0.44              | 3.78              | 0.52              | 1.57              | 0.24              |
| Total Ammonia (as N)                   |            | 0.08              | 0.11              | 0.06              | 0.05              | 0.12              | 0.05              | 1.29              | 0.1               | 0.03              | <0.02             |
| Un-ionized Ammonia (as N)              | 0.02       | 0.000             | 0.001             | 0.002             | 0.000             | 0.001             | 0.000             | 0.003             | 0.001             | 0.002             | 0.000             |
| Total Ammonia (as N, for calculations) |            | 0.08              | 0.11              | 0.06              | 0.05              | 0.12              | 0.05              | 1.29              | 0.1               | 0.03              | 0.01              |
| Nitrate (as N)                         |            | 1.29              | 1.44              | 1.63              | 0.96              | <0.10             | 0.56              | 1.50              | 0.50              | 0.26              | 0.17              |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <1                | <0.5              | <0.05             | <0.05             |
| Dissolved Nitrite + Nitrate            |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | 61                | 10                | 0                 | 74                | 92                | 230               | 400               | 1100              | 10800             | 58                |
| Total BOD <sub>5</sub>                 |            | 3                 | 1                 | <1                | 10                | 1                 | 3                 | 10                | <5                | <5                | <5                |
| Chloride                               |            | 809               | 1260              | 639               | 398               | 205               | 715               | 1170              | 341               | 24                | 27                |
| Total Phosphorus                       | 0.03       | 0.01              | 0.07              | 0.03              | 0.07              | 0.02              | 0.12              | 0.78              | 0.05              | 0.55              | 0.04              |
| Total Suspended Solids                 |            | 8                 | 17                | 4                 | 4                 | 3                 | 36                | 20                | <10               | 228               | 10                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.


<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**





<sup>·</sup> All parameters are mg/L unless otherwise indicated.



<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

|                                        |            | SW2                      |
|----------------------------------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------|
| Parameter                              |            | Rice Rd.                 |
|                                        |            | 2007-10-19       | 2007-12-05       | 2008-03-27       | 2008-08-06       | 2008-10-31       | 2008-12-16       | 2009-02-13       | 2009-02-13       | 2009-04-06               |
| Event Type                             |            | Wet              | Dry              | Freshet          | Wet              | Dry              | Wet              | Dry              | DUP              | Freshet                  |
| Event Phase                            |            | Pre-Construction         |
| Field Analyses                         |            |                  |                  |                  |                  |                  |                  |                  |                  |                          |
| Air Temperature (K)                    |            | 292.2            | 265.3            | 275.1            | 295.2            | 283.0            | 266.8            | 271.0            | 271.0            | 274.4                    |
| pH (unitless)                          | 6.5 - 8.5  | 7.9              | 8.5              | 6.9              | 8.0              | 7.1              | 8.0              | 7.4              | 7.4              | 7.3                      |
| Conductivity (µS/cm)                   |            | 902              | 2800             | 214              | 1630             | 1795             | 1637             | 2297             | 2297             | 310                      |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 13.1             | 17.2             | 14.5             | 8.1              | 9.5              | 13.6             |                  |                  | 11.6                     |
| Temperature (°C)                       |            | 18.2             | 4.9              | 4.1              | 21.7             | 12.7             | 2.9              | 3.2              | 3.2              | 6.3                      |
| Temperature-based DO objective*        | calculated | 5.5              | 7.0              | 7.1              | 5.1              | 6.1              | 7.3              | 7.3              | 7.3              | 6.9                      |
| Appearance                             |            | clear            | clear            | yellow-brown     | clear            | clear            | clear            | clear            | clear            | slightly cloudy<br>brown |
| LABORATORY ANALYSES                    |            |                  |                  |                  |                  |                  |                  |                  |                  |                          |
| pH (unitless)                          | 6.5 - 8.5  | 7.9              | 7.8              | 7.7              | 8.2              | 8.1              | 8.1              | 8.0              | 8.0              | 7.9                      |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.52             | 0.2              | 0.58             | 0.16             | <0.10            | 0.29             | 0.34             | 0.39             | 0.93                     |
| Total Ammonia (as N)                   |            | 0.03             | <0.02            | 0.11             | 0.03             | <0.02            | 0.03             | 0.03             | 0.03             | 0.1                      |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001            | <0.001           | 0.000            | 0.001            | <0.0001          | 0.000            | 0.000            | 0.000            | 0.000                    |
| Total Ammonia (as N, for calculations) |            | 0.03             | 0.01             | 0.11             | 0.03             | 0.01             | 0.03             | 0.03             | 0.03             | 0.1                      |
| Nitrate (as N)                         |            | <0.10            | 1.28             | 0.34             | 0.25             | 0.87             | 1.45             | 1.59             | 1.59             | 0.34                     |
| Nitrite (as N)                         |            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10                    |
| Dissolved Nitrite + Nitrate            |            |                  |                  |                  |                  |                  |                  |                  |                  |                          |
| E.coli (5TMPN/100ml)                   | 100        | 4300             |                  | 342              | <mark>195</mark> | <mark>780</mark> | <b>105</b>       | 7                | 28               | 60                       |
| Total BOD₅                             |            | 2                | <1               | 1                | <1               | <1               | <1               | <1               | <1               | 3                        |
| Chloride                               |            | 52               | 434              | 38               | 246              | 323              | 307              | 619              | 612              | 37                       |
| Total Phosphorus                       | 0.03       | <b>0.11</b>      | <0.01            | 0.63             | 0.04             | 0.02             | 0.03             | 0.05             | 0.05             | 0.33                     |
| Total Suspended Solids                 |            | 19               | <2               | 111              | <2               | 8                | 3                | 3                | 3                | 46                       |
| Notes:                                 |            | 1                | 2                | 3                | 4                | 5                | 6                | 7                | 8                | 9                        |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

|                                        |            | SW2              | SW2          | SW2                  | SW2             | SW2          | SW2          | SW2          | SW2               | SW2               | SW2               |
|----------------------------------------|------------|------------------|--------------|----------------------|-----------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.         | Rice Rd.     | Rice Rd.             | Rice Rd.        | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.          | Rice Rd.          | Rice Rd.          |
|                                        |            | 2009-06-18       | 2009-09-10   | 2009-12-01           | 2010-03-09      | 2010-06-16   | 2010-09-03   | 2010-10-05   | 2011-03-29        | 2011-06-06        | 2011-06-24        |
| Event Type                             |            | Wet              | Dry          | Wet                  | Freshet         | Wet          | Dry          | Wet          | Dry               | Freshet           | Wet               |
| Event Phase                            |            | Construction     | Construction | Construction         | Construction    | Construction | Construction | Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |                  |              |                      |                 |              |              |              |                   |                   |                   |
| Air Temperature (K)                    |            | 287.8            | 291.6        | 278.1                | 277.1           | 293.0        | 294.8        | 282.2        | 271.4             | 292.2             | 292.4             |
| pH (unitless)                          | 6.5 - 8.5  | 7.9              | 8.7          | 8.3                  | 7.2             | 8.0          | 8.3          | 7.5          | 8.8               | 8.3               | 8.0               |
| Conductivity (µS/cm)                   |            | 1967             | 478          | >4000                | 181             | 850          | 970          | 309          | 2140              | 1856              | 959               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 9.1              | 8.7          | 14.9                 | 14.8            | 9.4          | 6.3          | 10.5         | 15.6              | 8.7               | 7.6               |
| Temperature (°C)                       |            | 16.7             | 22.1         | 10.1                 | 3.0             | 23.4         | 23.2         | 14.2         | 5.7               | 17.7              | 18.4              |
| Temperature-based DO objective*        | calculated | 5.6              | 5.1          | 6.4                  | 7.3             | 5.0          | 5.0          | 5.9          | 6.9               | 5.5               | 5.4               |
| Appearance                             |            | clear            | clear        | clear and colourless | clear yellowish | clear        | clear        | brown        | clear             | clear             | cloudy            |
| LABORATORY ANALYSES                    |            |                  |              |                      |                 |              |              |              |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.9              | 8.2          | 8.2                  | 7.6             | 8.0          | 8.3          | 7.9          | 8.1               | 8.3               | 7.9               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.36             | 0.53         | 0.31                 | 0.54            | 0.57         | <0.10        | 0.15         | 0.74              | 0.41              | 0.64              |
| Total Ammonia (as N)                   |            | 0.13             | 0.02         | 0.2                  | 0.04            | 0.03         | <0.02        | 0.06         | <0.02             | 0.03              | 0.03              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.003            | 0.004        | 0.008                | 0.000           | 0.002        | <0.002       | 0.001        | 0.000             | 0.002             | 0.001             |
| Total Ammonia (as N, for calculations) |            | 0.13             | 0.02         | 0.2                  | 0.04            | 0.03         | 0.01         | 0.06         | 0.01              | 0.03              | 0.03              |
| Nitrate (as N)                         |            | 2.32             | 0.11         | 0.55                 | 0.19            | 0.5          | 0.1          | 0.21         | 1.05              | 0.72              | 0.50              |
| Nitrite (as N)                         |            | <0.10            | <0.10        | <0.10                | <0.10           | <0.10        | <0.10        | <0.10        | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            |                  |              |                      |                 |              |              |              |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | <mark>790</mark> | 30           | 13                   | 20              | 1720         | 80           | <b>11400</b> | 6                 | 300               | <b>1120</b>       |
| Total BOD₅                             |            | 2                | <1           | <1                   | 3               | 2            | 2            | 5            | 1                 | <1                | 2                 |
| Chloride                               |            | 296              | 61           | 1670                 | 29              | 212          | 183          | 34           | 403               | 430               | 205               |
| Total Phosphorus                       | 0.03       | 0.03             | 0.16         | 0.03                 | 0.30            | 0.06         | 0.02         | 0.29         | 0.11              | 0.02              | 0.12              |
| Total Suspended Solids                 |            | <2               | 14           | 6                    | 158             | 13           | 18           | 268          | 80                | <2                | 11                |
| Notes:                                 |            | 10               | 11           | 12                   | 13              | 14           | 15           | 16           | 17                | 18                | 19                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

|                                        |            | SW2               | SW2               | SW2                  | SW2          | SW2          | SW2               | SW2               | SW2               | SW2               | SW2               |
|----------------------------------------|------------|-------------------|-------------------|----------------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          | Rice Rd.          | Rice Rd.             | Rice Rd.     | Rice Rd.     | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          |
|                                        |            | 2011-09-30        | 2011-11-29        | 2012-03-15           | 2012-04-25   | 2012-10-10   | 2012-12-05        | 2013-03-27        | 2013-05-02        | 2013-06-13        | 2013-10-10        |
| Event Type                             |            | Dry               | Wet               | Dry                  | Freshet      | Dry          | Wet               | Freshet           | Dry               | Wet               | Dry               |
| Event Phase                            |            | Post-Construction | Post-Construction | Post-Construction    | Construction | Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |                   |                   |                      |              |              |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 286.2             | 279.4             | 285.5                | 279.5        | 282.1        | 274.0             | 276.6             | 289.6             | 289.7             | 285.7             |
| pH (unitless)                          | 6.5 - 8.5  | 8.1               | 8.3               | 8.0                  | 8.1          | 7.8          | 8.0               | 8.2               | 8.2               | 7.5               | 7.4               |
| Conductivity (µS/cm)                   |            | 505               | 144               | 1950                 | 1402         | 814          | 1492              | 1991              | 2250              | 456               | 1942              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 8.2               | 11.1              | 10.6                 | 9.5          | 7.8          | 8.1               | 13.2              | 9.8               | 11.4              | 8.9               |
| Temperature (°C)                       |            | 16.3              | 7.1               | 6.2                  | 12.8         | 13.2         | 7.1               | 5.5               | 10.9              | 12.1              | 14.8              |
| Temperature-based DO objective*        | calculated | 5.7               | 6.8               | 6.9                  | 6.1          | 6.0          | 6.8               | 7.0               | 6.3               | 6.1               | 5.8               |
| Appearance                             |            | cloudy            | brownish          | clear and colourless | clear        | cloudy grey  |                   | Clear             | Clear             | Cloudy brown      | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                      |              |              |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.4               | 7.7               | 8.2                  | 8.1          | 7.6          | 8.0               | 8.3               | 8.2               | 7.7               | 8.2               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.33              | 0.82              | 0.51                 | 0.64         | 0.95         | 0.35              | 0.22              | 0.21              | 1.61              | 0.33              |
| Total Ammonia (as N)                   |            | 0.1               | 0.05              | 0.02                 | <0.02        | 0.22         | <0.02             | <0.02             | 0.05              | 0.51              | 0.03              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.003             | 0.001             | 0.000                | 0.000        | 0.004        | 0.000             | 0.000             | 0.001             | 0.003             | 0.000             |
| Total Ammonia (as N, for calculations) |            | 0.1               | 0.05              | 0.02                 | 0.01         | 0.22         | 0.01              | 0.01              | 0.05              | 0.51              | 0.03              |
| Nitrate (as N)                         |            | 0.58              | 0.26              | 1.01                 | 0.80         | 0.70         | 0.56              | 1.02              | 1.42              | 13.60             | 1.10              |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10                | <0.10        | <0.10        | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            |                   |                   |                      |              |              |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | <b>850</b>        | 235               | 18                   | <b>150</b>   | 940          | 20                | <mark>690</mark>  | 0                 | <b>1570</b>       | 40                |
| Total BOD₅                             |            | 2                 | 3                 | <1                   | 2            | 5            | 3                 | 1                 | 3                 | 3                 | 1                 |
| Chloride                               |            | 58                | 13                | 397                  | 271          | 75           | 223               | 414               | 386               | 27                | 292               |
| Total Phosphorus                       | 0.03       | 0.16              | 0.23              | 0.02                 | 0.18         | 0.26         | 0.04              | <0.01             | 0.02              | 0.57              | 0.04              |
| Total Suspended Solids                 |            | 72                | 105               | 3                    | 30           | 117          | 21                | <2                | 5                 | 62                | 18                |
| Notes:                                 |            | 20                | 21                | 22                   | 23           | 24           | 25                | 26                | 27                | 28                | 29                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

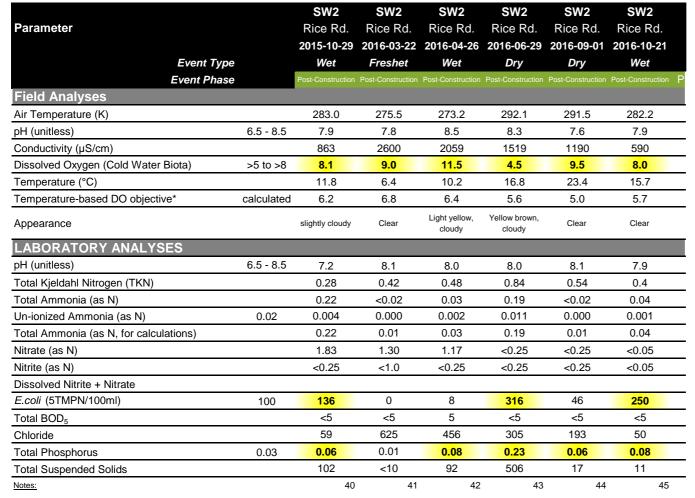
<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

|                                        |            | SW2               |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          |
|                                        |            | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-06-04        | 2014-09-24        | 2014-12-01        | 2015-03-12        | 2015-05-13        | 2015-06-09        | 2015-09-30        |
| Event Type                             |            | Wet               | Freshet           | Dry               | Wet               | Dry               | Wet               | Freshet           | Dry               | Wet               | Dry               |
| Event Phase                            |            | Post-Construction |
| Field Analyses                         |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 267.9             | 273.0             | 283.1             | 288.5             | 288.7             | 273.9             | 272.2             | 273.2             | 289.7             | 285.9             |
| pH (unitless)                          | 6.5 - 8.5  | 7.7               | 7.8               | 8.3               | 7.6               | 7.8               | 7.7               | 7.3               | 7.7               | 8.4               | 8.0               |
| Conductivity (µS/cm)                   |            | 3800              | 5390              | 3120              | 2360              | 2040              | 2950              | 3820              | 1738              | 255               | 910               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 8.0               | 11.2              | 11.2              | 9.9               | 8.7               | 8.5               | 10.8              | 10.3              | 9.8               | 6.7               |
| Temperature (°C)                       |            | 2.9               | 2.9               | 7.9               | 16.3              | 13.4              | 2.1               | 0.5               | 12.1              | 17.4              | 17.5              |
| Temperature-based DO objective*        | calculated | 7.3               | 7.3               | 6.6               | 5.7               | 6.0               | 7.4               | 7.7               | 6.1               | 5.6               | 5.5               |
| Appearance                             |            | Clear             | Cloudy brown      | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 8.0               | 7.9               | 8.1               | 8.0               | 7.9               | 7.9               | 7.7               | 8.0               | 7.7               | 8.1               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.42              | 0.36              | 0.29              | 0.44              | 0.2               | 0.38              | 3.42              | 0.41              | 1.28              | 0.24              |
| Total Ammonia (as N)                   |            | 0.05              | 0.1               | 0.05              | 0.04              | 0.06              | 0.04              | 1.2               | 0.04              | 0.04              | 0.06              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.000             | 0.001             | 0.002             | 0.000             | 0.001             | 0.000             | 0.002             | 0.000             | 0.003             | 0.002             |
| Total Ammonia (as N, for calculations) |            | 0.05              | 0.1               | 0.05              | 0.04              | 0.06              | 0.04              | 1.2               | 0.04              | 0.04              | 0.06              |
| Nitrate (as N)                         |            | 1.21              | 1.44              | 1.57              | 1.07              | <0.10             | 0.55              | <2                | 0.60              | 0.22              | <0.25             |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <2                | < 0.05            | < 0.05            | <0.25             |
| Dissolved Nitrite + Nitrate            |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | 69                | 3                 | 2                 | 36                | 2200              | <b>460</b>        | 380               | <b>1500</b>       | <b>8700</b>       | 180               |
| Total BOD₅                             |            | 2                 | 1                 | <1                | 11                | 1                 | 3                 | 10                | <5                | <5                | <5                |
| Chloride                               |            | 764               | 1390              | 639               | 449               | 350               | 803               | 1370              | 381               | 29                | 107               |
| Total Phosphorus                       | 0.03       | 0.01              | 0.05              | 0.02              | 0.09              | 0.02              | 0.11              | 0.66              | 0.04              | 0.56              | 0.02              |
| Total Suspended Solids                 |            | 6                 | 12                | 5                 | 3                 | 3                 | 16                | 13                | <10               | 272               | <10               |
| Notes:                                 |            | 30                | 31                | 32                | 33                | 34                | 35                | 36                | 37                | 38                | 39                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.


<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**



<sup>·</sup> All parameters are mg/L unless otherwise indicated.



<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

### **Regional Road 20 Redevelopment**



|                                        |            | SW3                            |
|----------------------------------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------------|
| Parameter                              |            | Rice Rd.                       |
|                                        |            | 2007-10-19       | 2007-12-05       | 2008-03-27       | 2008-08-06       | 2008-10-31       | 2008-12-16       | 2009-02-13       | 2009-04-06                     |
| Event Ty                               | pe         | Wet              | Dry              | Freshet          | Wet              | Dry              | Wet              | Dry              | Freshet                        |
| Event Pha                              | se         | Pre-Construction               |
| Field Analyses                         |            |                  |                  |                  |                  |                  |                  |                  |                                |
| Air Temperature (K)                    |            | 292.2            | 265.3            | 275.1            | 295.2            | 283.0            | 266.8            | 271.0            | 274.4                          |
| pH (unitless)                          | 6.5 - 8.5  | 7.8              | <b>8.6</b>       | 6.9              | 8.1              | 7.1              | 8.1              | 7.5              | 7.3                            |
| Conductivity (µS/cm)                   |            | 890              | 2790             | 251              | 1556             | 1781             | 1760             | 2861             | 444                            |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 12.9             | 17.0             | 14.4             | =                | 8.4              | 13.3             |                  | 11.6                           |
| Temperature (°C)                       |            | 18.9             | 4.3              | 5.5              | 22.1             | 12.5             | 2.7              | 3.1              | 6.2                            |
| Temperature-based DO objective*        | calculated | 5.4              | 7.1              | 7.0              | 5.1              | 6.1              | 7.3              | 7.3              | 6.9                            |
| Appearance                             |            | slightly cloudy  | clear            | yellow-brown     | clear            | clear            | clear            | clear            | slightly cloudy<br>light brown |
| LABORATORY ANALYSES                    |            |                  |                  |                  |                  |                  |                  |                  |                                |
| pH (unitless)                          | 6.5 - 8.5  | 7.8              | 7.9              | 7.8              | 8.0              | 8.0              | 8.1              | 8.0              | 7.9                            |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.67             | 0.32             | 0.39             | 0.27             | <0.10            | 0.18             | 0.34             | 0.93                           |
| Total Ammonia (as N)                   |            | 0.02             | 0.02             | 0.11             | 0.04             | 0.02             | <0.02            | 0.02             | 0.12                           |
| Un-ionized Ammonia (as N)              | 0.02       | 0.000            | 0.001            | 0.000            | 0.002            | 0.000            | <0.0003          | 0.000            | 0.000                          |
| Total Ammonia (as N, for calculations) |            | 0.02             | 0.02             | 0.11             | 0.04             | 0.02             | 0.01             | 0.02             | 0.12                           |
| Nitrate (as N)                         |            | 0.16             | 1.39             | 0.37             | 0.23             | 0.78             | 1.64             | 2.04             | 0.54                           |
| Nitrite (as N)                         |            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10                          |
| Dissolved Nitrite + Nitrate            |            | =                | =                | =                | =                | =                | -                | -                | =                              |
| E.coli (5TMPN/100ml)                   | 100        | 2480             |                  | 103              | <mark>156</mark> | <b>580</b>       | 85               | 12               | 100                            |
| Total BOD₅                             |            | 3                | <1               | 1                | <1               | <1               | <1               | <1               | 3                              |
| Chloride                               |            | 50               | 467              | 44               | 265              | 320              | 331              | 800              | 64                             |
| Total Phosphorus                       | 0.03       | 0.15             | 0.03             | 0.67             | 0.04             | 0.02             | 0.09             | 0.05             | 0.33                           |
| Total Suspended Solids                 |            | 20               | 11               | 111              | <2               | 3                | 44               | <2               | 44                             |
| Notes:                                 |            |                  |                  |                  |                  |                  |                  |                  |                                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW3          | SW3          | SW3             | SW3                  | SW3          | SW3          | SW3          | SW3          | SW3               | SW3               |
|----------------------------------------|------------|--------------|--------------|-----------------|----------------------|--------------|--------------|--------------|--------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.     | Rice Rd.     | Rice Rd.        | Rice Rd.             | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.          | Rice Rd.          |
|                                        |            | 2009-06-18   | 2009-06-18   | 2009-09-10      | 2009-12-01           | 2010-03-09   | 2010-06-16   | 2010-09-03   | 2010-10-05   | 2011-03-29        | 2011-06-06        |
| Event Type                             |            | Wet          | DUP          | Dry             | Wet                  | Freshet      | Wet          | Dry          | Wet          | Dry               | Freshet           |
| Event Phase                            |            | Construction | Construction | Construction    | Construction         | Construction | Construction | Construction | Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |              |              |                 |                      |              |              |              |              |                   |                   |
| Air Temperature (K)                    |            | 287.8        | 287.8        | 291.6           | 278.1                | 277.1        | 293.0        | 294.8        | 282.2        | 271.4             | 292.2             |
| pH (unitless)                          | 6.5 - 8.5  | 7.8          | 7.8          | 8.6             | 8.0                  | 7.0          | 8.0          | 8.0          | 7.8          | 8.8               | 8.3               |
| Conductivity (µS/cm)                   |            | 1928         | 1928         | 423             | >4000                | 385          | 860          | 1075         | 253          | 2210              | 1931              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 8.7          | 8.7          | 7.7             | 13.6                 | 15.1         | 7.7          | 5.4          | 11.5         | 15.0              | 9.1               |
| Temperature (°C)                       |            | 15.5         | 15.5         | 22.2            | 10.1                 | 4.5          | 22.7         | 22.9         | 13.3         | 6.0               | 18.0              |
| Temperature-based DO objective*        | calculated | 5.8          | 5.8          | 5.1             | 6.4                  | 7.1          | 5.0          | 5.0          | 6.0          | 6.9               | 5.5               |
| Appearance                             |            | clear        | clear        | clear to cloudy | clear and colourless | murky yellow | clear        | -            | brown        | clear             | clear             |
| LABORATORY ANALYSES                    |            |              |              |                 |                      |              |              |              |              |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 8.0          | 8.0          | 8.1             | 8.1                  | 7.8          | 7.9          | 8.2          | 7.9          | 8.2               | 8.4               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.35         | 0.36         | 0.34            | 0.35                 | 0.53         | 0.67         | 0.24         | 0.15         | 0.24              | <0.10             |
| Total Ammonia (as N)                   |            | 0.12         | 0.12         | 0.02            | 0.17                 | 0.05         | 0.03         | <0.02        | 0.07         | <0.02             | <0.02             |
| Un-ionized Ammonia (as N)              | 0.02       | 0.002        | 0.002        | 0.003           | 0.003                | 0.000        | 0.001        | <0.001       | 0.001        | 0.002             | 0.001             |
| Total Ammonia (as N, for calculations) |            | 0.12         | 0.12         | 0.02            | 0.17                 | 0.05         | 0.03         | 0.01         | 0.07         | 0.01              | 0.01              |
| Nitrate (as N)                         |            | 2.07         | 2.02         | 0.12            | 0.56                 | 0.36         | 0.55         | <0.10        | 0.17         | 1.07              | 0.78              |
| Nitrite (as N)                         |            | <0.10        | <0.10        | <0.10           | <0.10                | <0.10        | <0.10        | <0.10        | <0.10        | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            | -            | -            | -               | -                    | -            | -            | -            | -            | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100        | 1300         | 1300         | 800             | 14                   | 30           | 920          | <b>4500</b>  | 9300         | 5                 | 220               |
| Total BOD <sub>5</sub>                 |            | 1            | <1           | <1              | <1                   | 2            | 1            | 3            | 5            | <1                | 1                 |
| Chloride                               |            | 307          | 312          | 47              | 1750                 | 84           | 195          | 212          | 25           | 257               | 443               |
| Total Phosphorus                       | 0.03       | 0.02         | 0.12         | 0.23            | 0.03                 | 0.32         | 0.07         | 0.05         | 0.33         | 0.04              | 0.03              |
| Total Suspended Solids                 |            | 5            | 6            | 24              | 5                    | 167          | 30           | 45           | 342          | 11                | 12                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW3               | SW3               | SW3               | SW3               | SW3          | SW3          | SW3          | SW3          | SW3               | SW3               |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|--------------|--------------|--------------|--------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.          | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.     | Rice Rd.          | Rice Rd.          |
|                                        |            | 2011-06-24        | 2011-09-30        | 2011-11-29        | 2012-03-15        | 2012-04-25   | 2012-07-04   | 2012-07-27   | 2012-10-10   | 2012-12-05        | 2013-03-27        |
| Event Type                             |            | Wet               | Dry               | Wet               | Dry               | Freshet      | Wet          | Wet          | Dry          | Wet               | Freshet           |
| Event Phase                            |            | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Construction | Construction | Construction | Construction | Post-Construction | Post-Construction |
| Field Analyses                         |            |                   |                   |                   |                   |              |              |              |              |                   |                   |
| Air Temperature (K)                    |            | 292.4             | 286.2             | 279.4             | 285.5             | 279.5        | 273.2        | 296.3        | 282.1        | 274.0             | 276.6             |
| pH (unitless)                          | 6.5 - 8.5  | 8.0               | 8.4               | 8.4               | 8.0               | 8.2          | 7.9          | 7.9          | 7.9          | 7.9               | 8.1               |
| Conductivity (µS/cm)                   |            | 894               | 361               | 135               | 2110              | 1565         | 2300         | 1275         | 903          | 1565              | 2070              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 7.2               | 8.9               | 11.5              | 10.3              | 9.9          | 4.4          | 4.9          | 7.4          | 9.3               | 14.4              |
| Temperature (°C)                       |            | 18.4              | 15.9              | 7.1               | 6.2               | 12.5         | 22.4         | 22.0         | 13.3         | 7.1               | 5.8               |
| Temperature-based DO objective*        | calculated | 5.4               | 5.7               | 6.8               | 6.9               | 6.1          | 5.0          | 5.1          | 6.0          | 6.8               | 6.9               |
| Appearance                             |            | cloudy            | cloudy            | brownish          | clear             | cloudy       | clear        | clear        | cloudy grey  |                   | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |              |              |              |              |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.9               | 7.6               | 7.7               | 8.2               | 8.2          | 7.9          | 7.8          | 7.7          | 8.0               | 8.3               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.57              | 0.32              | 0.73              | 0.24              | 0.62         | 0.47         | 0.49         | 1.02         | 0.34              | 0.17              |
| Total Ammonia (as N)                   |            | < 0.02            | 0.04              | 0.03              | 0.03              | <0.02        | 0.2          | 0.11         | 0.23         | <0.02             | <0.02             |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001             | 0.003             | 0.001             | 0.000             | 0.001        | 0.007        | 0.004        | 0.005        | 0.000             | 0.000             |
| Total Ammonia (as N, for calculations) |            | 0.01              | 0.04              | 0.03              | 0.03              | 0.01         | 0.2          | 0.11         | 0.23         | 0.01              | 0.01              |
| Nitrate (as N)                         |            | 0.47              | 0.40              | 0.18              | 1.04              | 0.80         | 0.50         | 0.36         | 0.65         | 0.46              | 1.01              |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10        | <0.10        | <0.10        | <0.10        | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            | -                 | -                 | -                 | -                 | -            | -            | -            | -            | -                 |                   |
| E.coli (5TMPN/100ml)                   | 100        | 900               | 1130              | 203               | 18                | 60           | 490          | 244          | 610          | 10                | 670               |
| Total BOD <sub>5</sub>                 |            | 2                 | 1                 | 3                 | <1                | 2            | 1            | 3            | 7            | 2                 | 1                 |
| Chloride                               |            | 166               | 44                | 11                | 414               | 285          | 427          | 135          | 85           | 231               | 439               |
| Total Phosphorus                       | 0.03       | 0.12              | 0.14              | 0.21              | 0.02              | 0.19         | 0.06         | 0.06         | 0.24         | 0.03              | 0.01              |
| Total Suspended Solids                 |            | 42                | 42                | 124               | 4                 | 58           | 73           | 187          | 107          | 19                | 3                 |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW3               |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Rice Rd.          |
|                                        |            | 2013-05-02        | 2013-06-13        | 2013-10-10        | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-06-04        | 2014-09-24        | 2014-12-01        | 2015-03-12        |
| Event Type                             |            | Dry               | Wet               | Dry               | Wet               | Freshet           | Dry               | Wet               | Dry               | Wet               | Freshet           |
| Event Phase                            |            | Post-Construction |
| Field Analyses                         |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 289.6             | 289.7             | 285.7             | 267.9             | 273.0             | 283.1             | 288.5             | 288.7             | 273.9             | 272.2             |
| pH (unitless)                          | 6.5 - 8.5  | 8.3               | 7.5               | 7.4               | 7.7               | 7.7               | 8.5               | 7.5               | 7.6               | 7.8               | 7.0               |
| Conductivity (µS/cm)                   |            | 2190              | 462               | 1991              | 3780              | 5610              | 3150              | 2370              | 2350              | 2890              | 3890              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 10.0              | 11.5              | 8.5               | 8.0               | 11.3              | 12.2              | 8.8               | 8.2               | 8.6               | 10.9              |
| Temperature (°C)                       |            | 10.8              | 17.0              | 14.7              | 2.8               | 3.1               | 8.0               | 16.3              | 14.3              | 2.0               | 0.5               |
| Temperature-based DO objective*        | calculated | 6.3               | 5.6               | 5.8               | 7.3               | 7.3               | 6.6               | 5.7               | 5.9               | 7.4               | 7.7               |
| Appearance                             |            | Clear             | Cloudy Brown      | Clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 8.2               | 7.6               | 8.2               | 8.0               | 7.9               | 8.2               | 8.0               | 7.9               | 7.9               | 7.7               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.21              | 2.15              | 0.23              | 0.41              | 0.29              | 0.27              | 0.42              | 0.83              | 0.35              | 3.34              |
| Total Ammonia (as N)                   |            | 0.04              | 0.51              | 0.05              | 0.03              | 0.1               | 0.04              | 0.03              | 0.05              | 0.03              | 1.27              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001             | 0.005             | 0.000             | 0.000             | 0.000             | 0.002             | 0.000             | 0.001             | 0.000             | 0.001             |
| Total Ammonia (as N, for calculations) |            | 0.04              | 0.51              | 0.05              | 0.03              | 0.1               | 0.04              | 0.03              | 0.05              | 0.03              | 1.27              |
| Nitrate (as N)                         |            | 1.39              | 13.60             | 0.96              | 1.15              | 1.45              | 1.54              | 0.98              | <0.10             | 0.49              | <2                |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <2                |
| Dissolved Nitrite + Nitrate            |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100        | 1                 | 1420              | 55                | 89                | 8                 | 4                 | 38                | 243               | 470               | 330               |
| Total BOD₅                             |            | 1                 | 2                 | <1                | 2                 | <1                | <1                | 8                 | 3                 | 3                 | 10                |
| Chloride                               |            | 398               | 27                | 297               | 838               | 1410              | 658               | 458               | 412               | 939               | 1410              |
| Total Phosphorus                       | 0.03       | 0.03              | 0.59              | 0.03              | 0.02              | 0.04              | 0.01              | 0.07              | 0.11              | 0.09              | 0.65              |
| Total Suspended Solids                 |            | 4                 | 60                | 6                 | 7                 | 8                 | 2                 | 3                 | 16                | 18                | 16                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

| Parameter  Event Type                  |              |                       | SW3<br>Rice Rd.<br>2015-06-09<br>Wet |                       | SW3<br>Rice Rd.<br>2015-10-29<br>Wet | SW3 Rice Rd. 2016-03-22 Freshet | SW3<br>Rice Rd.<br>2016-04-26<br>Wet | SW3<br>Rice Rd.<br>2016-06-29<br>Dry | SW3<br>Rice Rd.<br>2016-09-01<br>Dry | <b>SW3</b> Rice Rd. <b>2016-10-21</b> Wet |
|----------------------------------------|--------------|-----------------------|--------------------------------------|-----------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|
| Event Phase                            |              | Dry Post-Construction |                                      | Dry Post-Construction |                                      |                                 |                                      |                                      |                                      | Post-Construction F                       |
| Field Analyses                         | <del>,</del> | 1 Ost-Construction    | 1 Ost-Construction                   | T OST-CONSTRUCTION    | T OST-CONSTRUCTION                   | T OST-CONSTRUCTION              | T OST-CONSTRUCTION                   | 1 Ost-Construction                   | 1 Ost-Construction                   | 1 ost-construction                        |
| Air Temperature (K)                    |              | 273.2                 | 289.7                                | 285.9                 | 283.0                                | 275.5                           | 273.2                                | 292.1                                | 291.5                                | 282.2                                     |
| pH (unitless)                          | 6.5 - 8.5    | 7.7                   | 8.0                                  | 7.9                   | 8.1                                  | 8.0                             | 8.5                                  | <b>8.7</b>                           | 7.6                                  | 7.8                                       |
| Conductivity (µS/cm)                   |              | 1990                  | 664                                  | 936                   | 861                                  | 2670                            | 2081                                 | 1565                                 | 1200                                 | 580                                       |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8     | 10.3                  | 13.8                                 | 7.2                   | 8.2                                  | 9.3                             | 12.0                                 | 6.6                                  | <b>5.9</b>                           | 8.4                                       |
| Temperature (°C)                       |              | 12.3                  | 17.1                                 | 17.2                  | 11.6                                 | 6.4                             | 10.5                                 | 17.0                                 | 23.0                                 | 15.7                                      |
| Temperature-based DO objective*        | calculated   | 6.1                   | 5.6                                  | 5.6                   | 6.2                                  | 6.8                             | 6.3                                  | 5.6                                  | 5.0                                  | 5.7                                       |
| Appearance                             |              | Clear                 | Cloudy brown grey                    | Clear                 | slightly cloudy                      | Clear                           | Light yellow, cloudy                 | Yellow-brown, cloudy                 | Cleat                                | Clear                                     |
| LABORATORY ANALYSES                    |              |                       |                                      |                       |                                      |                                 |                                      |                                      |                                      |                                           |
| pH (unitless)                          | 6.5 - 8.5    | 8.0                   | 7.7                                  | 8.1                   | 7.4                                  | 8.2                             | 8.0                                  | 8.1                                  | 7.9                                  | 7.9                                       |
| Total Kjeldahl Nitrogen (TKN)          |              | 0.44                  | 1.37                                 | 0.22                  | 0.37                                 | 0.46                            | 0.5                                  | 0.42                                 | 0.51                                 | 0.39                                      |
| Total Ammonia (as N)                   |              | 0.04                  | 0.21                                 | 0.04                  | 0.22                                 | < 0.02                          | 0.03                                 | 0.08                                 | <0.02                                | <0.02                                     |
| Un-ionized Ammonia (as N)              | 0.02         | 0.000                 | 0.007                                | 0.001                 | 0.005                                | 0.000                           | 0.002                                | 0.010                                | 0.000                                | 0.000                                     |
| Total Ammonia (as N, for calculations) |              | 0.04                  | 0.21                                 | 0.04                  | 0.22                                 | 0.01                            | 0.03                                 | 0.08                                 | 0.01                                 | 0.01                                      |
| Nitrate (as N)                         |              | <0.5                  | 0.61                                 | <0.25                 | 1.71                                 | 1.30                            | 1.20                                 | <0.25                                | <50                                  | <0.05                                     |
| Nitrite (as N)                         |              | <0.5                  | <0.10                                | <0.25                 | <0.25                                | <1.0                            | <0.5                                 | <0.25                                | <50                                  | <0.05                                     |
| Dissolved Nitrite + Nitrate            |              |                       |                                      |                       |                                      |                                 |                                      |                                      |                                      |                                           |
| E.coli (5TMPN/100ml)                   | 100          | <b>1200</b>           | <b>5800</b>                          | <mark>138</mark>      | <mark>132</mark>                     | 0                               | 8                                    | 340                                  | 46                                   | 320                                       |
| Total BOD <sub>5</sub>                 |              | <5                    | <5                                   | <5                    | <5                                   | <5                              | <5                                   | <5                                   | <5                                   | <5                                        |
| Chloride                               |              | 480                   | 124                                  | 119                   | 60                                   | 640                             | 461                                  | 307                                  | 203                                  | 50                                        |
| Total Phosphorus                       | 0.03         | 0.05                  | 0.45                                 | 0.02                  | 0.05                                 | 0.02                            | 0.07                                 | 0.08                                 | 0.07                                 | 0.06                                      |
| Total Suspended Solids                 |              | 25                    | 337                                  | <10                   | 83                                   | <10                             | 61                                   | 92                                   | 23                                   | 20                                        |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

| Parameter                              |            |                       |                  |                        | 2008-08-06       | <b>SW4</b> Cataract Rd. 2008-10-31 |                  |                  |                                |              |
|----------------------------------------|------------|-----------------------|------------------|------------------------|------------------|------------------------------------|------------------|------------------|--------------------------------|--------------|
| Event Type                             |            | Wet                   | Dry              | Freshet                | Wet              | Dry                                | Wet              | Dry              | Freshet                        | Wet          |
| Event Phase                            |            | Pre-Construction      | Pre-Construction | Pre-Construction       | Pre-Construction | Pre-Construction                   | Pre-Construction | Pre-Construction | Pre-Construction               | Construction |
| Field Analyses                         |            |                       |                  |                        |                  |                                    |                  |                  |                                |              |
| Air Temperature (K)                    |            | 292.2                 | 265.3            | 275.1                  | 295.2            | 283.0                              | 266.8            | 271.0            | 274.4                          | 287.8        |
| pH (unitless)                          | 6.5 - 8.5  | 7.7                   | 8.4              | 7.0                    | 7.9              | 7.0                                | 7.3              | 7.7              | 7.0                            | 8.0          |
| Conductivity (µS/cm)                   |            | 2080                  | 1510             | 309                    | 2759             | 939                                | 903              | 861              | 720                            | 3092         |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 11.3                  | 18.2             | 10.6                   | 18.0             | 9.8                                | 12.5             | 11.3             | 11.3                           | 8.2          |
| Temperature (°C)                       |            | 19.1                  | 2.2              | 4.1                    | 29.0             | 11.9                               | 3.1              | 3.2              | 6.1                            | 16.4         |
| Temperature-based DO objective*        | calculated | 5.4                   | 7.4              | 7.1                    | 4.5              | 6.2                                | 7.3              | 7.3              | 6.9                            | 5.7          |
| Appearance                             |            | cloudy grey-<br>green | clear            | clear-cloudy<br>yellow |                  | clear                              | clear            | clear yellowish  | slightly cloudy<br>light brown | clear        |
| LABORATORY ANALYSES                    |            |                       |                  |                        |                  |                                    |                  |                  |                                |              |
| pH (unitless)                          | 6.5 - 8.5  | 7.8                   | 7.9              | 7.6                    | 8.2              | 8.1                                | 7.8              | 7.6              | 7.6                            | 7.7          |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.94                  | 0.48             | 1.15                   | 0.75             | 0.22                               | 0.23             | 0.4              | 1.04                           | 1.03         |
| Total Ammonia (as N)                   |            | 0.08                  | 0.04             | 0.11                   | 0.06             | 0.02                               | 0.03             | 0.03             | 0.1                            | 0.42         |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001                 | 0.001            | 0.000                  | 0.003            | 0.000                              | 0.000            | 0.000            | 0.000                          | 0.011        |
| Total Ammonia (as N, for calculations) |            | 0.08                  | 0.04             | 0.11                   | 0.06             | 0.02                               | 0.03             | 0.03             | 0.1                            | 0.42         |
| Nitrate (as N)                         |            | 1.20                  | 3.67             | 0.90                   | <0.10            | 8.36                               | 3.23             | 2.28             | 1.67                           | 8.34         |
| Nitrite (as N)                         |            | <0.10                 | <0.10            | <0.10                  | <0.10            | <0.10                              | <0.10            | <0.10            | <0.10                          | 0.23         |
| Dissolved Nitrite + Nitrate            |            | -                     | -                | -                      | -                | -                                  | -                | -                | -                              | -            |
| E.coli (5TMPN/100ml)                   | 100        | 18500                 |                  | 6000                   | 26               | 1850                               | 7200             | 9280             | 3940                           | 1300         |
| Total BOD <sub>5</sub>                 |            | 3                     | 1                | 2                      | 3                | <1                                 | 4                | 1                | 2                              | 2            |
| Chloride                               |            | 534                   | 334              | 34                     | 719              | 87                                 | 107              | 192              | 119                            | 464          |
| Total Phosphorus                       | 0.03       | 0.24                  | 0.07             | 0.20                   | 0.06             | 0.06                               | 0.04             | 0.05             | 0.16                           | 0.03         |
| Total Suspended Solids                 | _          | 31                    | 5                | 33                     | 16               | 15                                 | 53               | <2               | 22                             | 15           |
|                                        |            |                       |                  |                        |                  |                                    |                  |                  |                                | ,            |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |           | SW4                  | SW4               | SW4               | SW4                      | SW4               | SW4               | SW4               | SW4               | SW4               | SW4               |
|----------------------------------------|-----------|----------------------|-------------------|-------------------|--------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |           | Cataract Rd.         | Cataract Rd.      | Cataract Rd.      | Cataract Rd.             | Cataract Rd.      | Cataract Rd.      | Cataract Rd.      | Cataract Rd.      | Cataract Rd.      | Cataract Rd.      |
|                                        |           | 2009-12-01           | 2010-03-09        | 2010-06-16        | 2010-09-03               | 2010-10-05        | 2011-03-29        | 2011-06-24        | 2011-09-30        | 2011-11-29        | 2012-03-15        |
| Event Type                             |           | Wet                  | Freshet           | Wet               | Dry                      | Wet               | Dry               | Wet               | Dry               | Wet               | Dry               |
| Event Phase                            |           | Post-Construction    | Post-Construction | Post-Construction | Post-Construction        | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                         |           |                      |                   |                   |                          |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |           | 278.1                | 277.1             | 293.0             | 294.8                    | 282.2             | 271.4             | 292.4             | 286.2             | 279.4             | 285.5             |
| pH (unitless)                          | 6.5 - 8.5 | 7.8                  | 7.2               | 7.7               | 7.2                      | 7.7               | 8.3               | 7.7               | 8.1               | 8.1               | 7.9               |
| Conductivity (µS/cm)                   |           | 1180                 | 370               | 600               | 1080                     | 306               | 1157              | 1124              | 549               | 300               | 1360              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8  | 15.6                 | 13.5              | 10.5              | 5.0                      | 9.6               | 12.7              | 2.3               | 7.5               | 10.5              | 8.6               |
| Temperature (°C)                       |           | 9.9                  | 5.4               | 19.8              | 25.6                     | 13.3              | 3.5               | 18.7              | 16.3              | 7.8               | 5.7               |
| Temperature-based DO objective*        | alculated | 6.4                  | 7.0               | 5.3               | 4.8                      | 6.0               | 7.2               | 5.4               | 5.7               | 6.7               | 6.9               |
| Appearance                             |           | clear and colourless | clear yellowish   | clear             | Slightly Cloudy<br>Brown | clear yellow      | clear             | clear             | cloudy            | yellowish         | slightly cloudy   |
| LABORATORY ANALYSES                    |           |                      |                   |                   |                          |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5 | 7.8                  | 7.5               | 7.6               | 8.0                      | 7.8               | 7.9               | 7.7               | 7.7               | 7.5               | 8.0               |
| Total Kjeldahl Nitrogen (TKN)          |           | 0.37                 | 0.76              | 0.63              | 0.39                     | 0.37              | 1.20              | 0.62              | 0.53              | 1.14              | 0.23              |
| Total Ammonia (as N)                   |           | 0.02                 | 0.10              | 0.05              | <0.02                    | 0.20              | 0.02              | <0.02             | 0.05              | 0.06              | 0.03              |
| Un-ionized Ammonia (as N)              | 0.02      | 0.000                | 0.000             | 0.001             | <0.0002                  | 0.003             | 0.000             | 0.000             | 0.002             | 0.001             | 0.000             |
| Total Ammonia (as N, for calculations) |           | 0.02                 | 0.1               | 0.05              | 0.01                     | 0.2               | 0.02              | 0.01              | 0.05              | 0.06              | 0.03              |
| Nitrate (as N)                         |           | 2.91                 | 0.76              | 0.84              | <0.10                    | 0.26              | 1.58              | 0.49              | 1.39              | 0.99              | 1.66              |
| Nitrite (as N)                         |           | <0.10                | <0.10             | <0.10             | <0.10                    | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |           | -                    | -                 | -                 | -                        | -                 | -                 | -                 | -                 | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100       | 11200                | <b>460</b>        | 420               | 100                      | 1860              | <b>5900</b>       | 76                | <b>1590</b>       | 313               | 69                |
| Total BOD <sub>5</sub>                 |           | <1                   | 4                 | 1                 | <1                       | 2                 | <1                | 2                 | <1                | 4                 | <1                |
| Chloride                               |           | 150                  | 58                | 75                | 112                      | 28                | 281               | 197               | 57                | 22                | 189               |
| Total Phosphorus                       | 0.03      | 0.07                 | 0.16              | 0.07              | 0.05                     | 0.10              | 0.03              | 0.05              | 0.11              | 0.09              | 0.01              |
| Total Suspended Solids                 |           | 2                    | 16                | 4                 | 65                       | 21                | 7                 | 11                | 8                 | 56                | <2                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

 $<sup>^{\</sup>star\star}$  - E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

### **Regional Road 20 Redevelopment**

|                                        |           | SW4               |
|----------------------------------------|-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |           | Cataract Rd.      |
|                                        |           | 2012-04-25        | 2012-07-27        | 2012-10-10        | 2013-03-27        | 2013-05-02        | 2013-06-13        | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-12-01        |
| Event Type                             |           | Freshet           | Wet               | Dry               | Freshet           | Dry               | Wet               | Wet               | Freshet           | Dry               | Wet               |
| Event Phase                            |           | Post-Construction |
| Field Analyses                         |           |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |           | 279.5             | 296.3             | 282.1             | 276.6             | 289.6             | 289.7             | 267.9             | 273.0             | 283.1             | 273.9             |
| pH (unitless)                          | 6.5 - 8.5 | 7.7               | 7.6               | 8.4               | 8.4               | 8.2               | 7.4               | 7.9               | 7.3               | 8.2               | 7.7               |
| Conductivity (µS/cm)                   |           | 828               | 1324              | 592               | 2190              | 2110              | 368               | 2690              | 2510              | 1119              | 2320              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8  | 8.9               | <b>4.1</b>        | 10.9              | 10.9              | 3.9               | <b>5.4</b>        | 7.1               | 9.9               | 11.8              | <b>6.8</b>        |
| Temperature (°C)                       |           | 8.3               | 23.3              | 13.6              | 4.2               | 10.1              | 16.6              | 5.3               | 2.1               | 7.5               | 2.2               |
| Temperature-based DO objective* ca     | alculated | 6.6               | 5.0               | 6.0               | 7.1               | 6.4               | 5.6               | 7.0               | 7.4               | 6.7               | 7.4               |
| Appearance                             |           | clear             | dark brown        | clear             | Clear             | Clear             | Cloudy brown      | Clear             | Clear             | Clear             | Clear             |
| LABORATORY ANALYSES                    |           |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5 | 7.9               | 7.6               | 7.9               | 8.1               | 7.8               | 7.6               | 7.9               | 7.5               | 7.9               | 7.8               |
| Total Kjeldahl Nitrogen (TKN)          |           | 0.39              | 1.96              | 0.65              | 0.31              | 0.34              | 1.91              | 0.28              | 0.38              | 0.28              | 0.86              |
| Total Ammonia (as N)                   |           | <0.02             | 0.04              | <0.02             | <0.02             | 0.03              | 0.09              | <0.02             | 0.14              | 0.03              | 0.05              |
| Un-ionized Ammonia (as N)              | 0.02      | 0.000             | 0.001             | 0.001             | 0.001             | 0.001             | 0.001             | 0.000             | 0.000             | 0.001             | 0.000             |
| Total Ammonia (as N, for calculations) |           | 0.01              | 0.04              | 0.01              | 0.01              | 0.03              | 0.09              | 0.01              | 0.14              | 0.03              | 0.05              |
| Nitrate (as N)                         |           | 3.68              | 0.63              | 0.68              | 1.71              | 1.90              | 0.70              | 2.05              | 1.43              | 2.43              | 2.72              |
| Nitrite (as N)                         |           | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |           | -                 | -                 | -                 |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100       | 2580              | 137               | 28                | <del>580</del>    | 3                 | <b>5400</b>       | <b>313</b>        | 1940              | 60                | <b>4520</b>       |
| Total BOD <sub>5</sub>                 |           | 2                 | 12                | 2                 | 1                 | 3                 | 3                 | <1                | <1                | <1                | 2                 |
| Chloride                               |           | 69                | 236               | 59                | 535               | 382               | 32                | 612               | 543               | 135               | 1020              |
| Total Phosphorus                       | 0.03      | 0.09              | 0.68              | 0.10              | 0.07              | 0.05              | 0.55              | 0.02              | 0.05              | 0.03              | 0.10              |
| Total Suspended Solids                 |           | 24                | 187               | 121               | 17                | 24                | 56                | 5                 | 9                 | 6                 | 13                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

# wsp

### **Regional Road 20 Redevelopment**

|                                        |            | SW5                            | SW5          | SW5                              | SW5               |
|----------------------------------------|------------|------------------|------------------|------------------|------------------|------------------|------------------|--------------------------------|--------------|----------------------------------|-------------------|
| Parameter                              |            | Cataract Rd.                   | Cataract Rd. | Cataract Rd.                     | Cataract Rd.      |
|                                        |            | 2007-10-19       | 2007-12-05       | 2008-03-27       | 2008-10-31       | 2008-12-16       | 2009-02-13       | 2009-04-06                     | 2009-06-18   | 2009-09-10                       | 2009-12-01        |
| Event Type                             |            | Wet              | Dry              | Freshet          | Dry              | Wet              | Dry              | Freshet                        | Wet          | Dry                              | Wet               |
| Event Phase                            |            | Pre-Construction               | Construction | Construction                     | Post-Construction |
| Field Analyses                         |            |                  |                  |                  |                  |                  |                  |                                |              |                                  |                   |
| Air Temperature (K)                    |            | 292.2            | 265.3            | 275.1            | 283.0            | 266.8            | 271.0            | 274.4                          | 287.8        | 291.6                            | 278.1             |
| pH (unitless)                          | 6.5 - 8.5  | 7.3              | 8.7              | 6.9              | 7.1              | 7.8              | 7.7              | 7.1                            | 8.0          | 8.7                              | 8.6               |
| Conductivity (µS/cm)                   |            | 159              | 1200             | 1630             | 928              | 845              | 747              | 390                            | 3143         | 1062                             | 996               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 10.9             | 20.3             | 18.0             | 10.8             | 15.6             | 11.8             | 11.8                           | 8.0          | 15.2                             | 17.0              |
| Temperature (°C)                       |            | 19.5             | 0.3              | 29.0             | 11.4             | 0.0              | 4.0              | 6.4                            | 16.7         | 28.7                             | 10.1              |
| Temperature-based DO objective*        | calculated | 5.3              | 7.7              | 4.5              | 6.2              | 7.7              | 7.2              | 6.8                            | 5.6          | 4.5                              | 6.4               |
| Appearance                             |            | cloudy brown     | slightly cloudy  | clear            | clear            | clear            | clear yellowish  | slightly cloudy<br>light brown | clear        | cloudy, green<br>(lots of algae) | clear yellowish   |
| LABORATORY ANALYSES                    |            |                  |                  |                  |                  |                  |                  |                                |              |                                  |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.5              | 7.9              | 7.7              | 8.2              | 8.1              | 7.9              | 7.7                            | 7.9          | 8.3                              | 8.4               |
| Total Kjeldahl Nitrogen (TKN)          |            | 4.72             | 1.07             | 1.64             | 0.35             | 0.63             | 0.57             | 1.48                           | 1.45         | 1.5                              | 0.55              |
| Total Ammonia (as N)                   |            | 2.75             | 0.23             | 0.08             | 0.02             | 0.24             | 0.04             | 0.27                           | 1.10         | 0.04                             | 0.07              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.021            | 0.008            | 0.000            | 0.000            | 0.001            | 0.000            | 0.000                          | 0.032        | 0.010                            | 0.005             |
| Total Ammonia (as N, for calculations) |            | 2.75             | 0.23             | 0.08             | 0.02             | 0.24             | 0.04             | 0.27                           | 1.1          | 0.04                             | 0.07              |
| Nitrate (as N)                         |            | <0.10            | 3.86             | 0.87             | 5.79             | 2.80             | 1.94             | 1.19                           | 14.10        | <0.10                            | 1.67              |
| Nitrite (as N)                         |            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10            | <0.10                          | 0.34         | <0.10                            | <0.10             |
| Dissolved Nitrite + Nitrate            |            | -                | -                | -                | -                | -                | -                | -                              | -            | -                                | -                 |
| E.coli (5TMPN/100ml)                   | 100        | 12300            |                  | <b>5030</b>      | 31               | 2700             | 6130             | 2660                           | 1720         | 10                               | 205               |
| Total BOD <sub>5</sub>                 |            | 29               | <1               | 1                | <1               | 1                | 2                | 4                              | 3            | 4                                | 1                 |
| Chloride                               |            | 207              | 192              | 20               | 87               | 99               | 117              | 48                             | 322          | 202                              | 126               |
| Total Phosphorus                       | 0.03       | 0.87             | 0.13             | 0.38             | 0.05             | 0.10             | 0.08             | 0.33                           | 0.03         | 0.24                             | 0.11              |
| Total Suspended Solids                 |            | 584              | 13               | 67               | 3                | 4                | 3                | 44                             | 9            | 57                               | 10                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                        |            | SW5               |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |            | Cataract Rd.      |
|                                        |            | 2010-03-09        | 2010-06-16        | 2010-10-05        | 2011-03-29        | 2011-06-06        | 2011-06-24        | 2011-09-30        | 2011-11-29        | 2012-03-15        | 2012-04-25        |
| Event Type                             |            | Freshet           | Wet               | Wet               | Dry               | Freshet           | Wet               | Dry               | Wet               | Dry               | Freshet           |
| Event Phase                            |            | Post-Construction |
| Field Analyses                         |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |            | 277.1             | 293.0             | 282.2             | 271.4             | 292.2             | 292.4             | 286.2             | 279.4             | 285.5             | 279.5             |
| pH (unitless)                          | 6.5 - 8.5  | 7.3               | 8.2               | 7.6               | 9.6               | 8.4               | 8.3               | 8.3               | 8.2               | 7.9               | 8.3               |
| Conductivity (µS/cm)                   |            | 264               | 470               | 385               | 1440              | 809               | 964               | 401               | 205               | 1360              | 770               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 14.0              | 9.3               | 10.9              | 20.2              | 9.4               | 7.9               | 7.9               | 11.0              | 9.4               | 9.7               |
| Temperature (°C)                       |            | 4.1               | 27.6              | 12.6              | 10.2              | 26.0              | 21.4              | 16.0              | 6.8               | 5.8               | 17.6              |
| Temperature-based DO objective*        | calculated | 7.1               | 4.6               | 6.1               | 6.4               | 4.7               | 5.1               | 5.7               | 6.8               | 6.9               | 5.5               |
| Appearance                             |            | cloudy yellow     | clear             | cloudy yellow     | clear yellowish   | clear             | clear yellowish   | cloudy            | brownish          | clear             | clear             |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5  | 7.6               | 8.4               | 7.9               | 8.7               | 8.3               | 8.1               | 7.8               | 7.5               | 8.1               | 8.2               |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.83              | 1.06              | 0.42              | 0.64              | 1                 | 0.97              | 0.44              | 1.56              | 0.32              | 0.77              |
| Total Ammonia (as N)                   |            | 0.15              | 0.03              | 0.14              | 0.05              | 0.14              | 0.05              | 0.1               | 0.02              | 0.02              | 0.04              |
| Un-ionized Ammonia (as N)              | 0.02       | 0.000             | 0.003             | 0.001             | 0.022             | 0.019             | 0.004             | 0.005             | 0.000             | 0.000             | 0.002             |
| Total Ammonia (as N, for calculations) |            | 0.15              | 0.03              | 0.14              | 0.05              | 0.14              | 0.05              | 0.1               | 0.02              | 0.02              | 0.04              |
| Nitrate (as N)                         |            | 0.61              | <0.10             | 0.4               | 0.42              | <0.10             | 0.15              | 1.32              | 0.28              | 0.85              | 3.65              |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |            | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100        | <mark>190</mark>  | 860               | 1220              | 31                | <b>52000</b>      | 2800              | <b>1850</b>       | <mark>190</mark>  | 6                 | <mark>160</mark>  |
| Total BOD₅                             |            | 5                 | 2                 | 1                 | <1                | 4                 | 2                 | <1                | 5                 | <1                | 2                 |
| Chloride                               |            | 39.0              | 54.0              | 43                | 457               | 93                | 150               | 32                | 15                | 191               | 69                |
| Total Phosphorus                       | 0.03       | 0.38              | 0.15              | 0.12              | 0.07              | 0.06              | 0.03              | 0.11              | 0.12              | 0.02              | <b>0.11</b>       |
| Total Suspended Solids                 |            | 167               | 21                | 23                | 7                 | 19                | 8                 | 11                | 611               | 6                 | 30                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                        |        | SW5               |
|----------------------------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              | (      | Cataract Rd.      |
|                                        |        | 2012-10-10        | 2012-12-05        | 2013-03-27        | 2013-05-02        | 2013-06-13        | 2013-10-10        | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-06-04        |
| Event Type                             |        | Dry               | Wet               | Freshet           | Dry               | Wet               | Dry               | Wet               | Freshet           | Dry               | Wet               |
| Event Phase                            | F      | Post-Construction |
| Field Analyses                         |        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |        | 282.1             | 274.0             | 276.6             | 289.6             | 289.7             | 285.7             | 267.9             | 273.0             | 283.1             | 288.5             |
| pH (unitless) 6.5                      | - 8.5  | 8.4               | 8.3               | 8.2               | 8.3               | 7.1               | 7.6               | 7.9               | 7.8               | 8.2               | 8.3               |
| Conductivity (µS/cm)                   |        | 643               | 1038              | 2170              | 1939              | 238               | 1608              | 2990              | 1499              | 1105              | 1000              |
| Dissolved Oxygen (Cold Water Biota) >5 | to >8  | 8.9               | 10.7              | 21.4              | 9.4               | 10.2              | 13.7              | 9.8               | 11.2              | 14.5              | 11.4              |
| Temperature (°C)                       |        | 12.8              | 4.3               | 3.4               | 14.1              | 16.8              | 15.5              | 0.1               | 0.7               | 6.5               | 20.2              |
| Temperature-based DO objective* calc   | ulated | 6.1               | 7.1               | 7.2               | 5.9               | 5.6               | 5.8               | 7.7               | 7.6               | 6.8               | 5.3               |
| Appearance                             |        | clear             |                   | Clear             | Clear             | Cloudy brown      | Clear             | Clear             | Clear             | Clear             | Clear             |
| LABORATORY ANALYSES                    |        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless) 6.5                      | - 8.5  | 8.1               | 8.1               | 8.4               | 8.1               | 7.6               | 8.4               | 8.1               | 7.9               | 8.3               | 8.3               |
| Total Kjeldahl Nitrogen (TKN)          |        | 0.39              | 0.66              | 0.45              | 0.61              | 2.49              | 0.32              | 0.37              | 0.52              | 0.4               | 0.52              |
| Total Ammonia (as N)                   |        | <0.02             | 0.05              | <0.02             | 0.03              | 0.13              | 0.03              | 0.03              | 0.09              | <0.02             | 0.04              |
| Un-ionized Ammonia (as N) 0            | .02    | 0.001             | 0.001             | 0.000             | 0.001             | 0.000             | 0.000             | 0.000             | 0.001             | 0.000             | 0.003             |
| Total Ammonia (as N, for calculations) |        | 0.01              | 0.05              | 0.01              | 0.03              | 0.13              | 0.03              | 0.03              | 0.09              | 0.01              | 0.04              |
| Nitrate (as N)                         |        | 0.34              | 1.87              | 0.98              | <0.10             | 0.60              | <0.10             | 1.78              | 0.90              | 1.47              | <0.10             |
| Nitrite (as N)                         |        | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |        | -                 | -                 |                   |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 00     | 1090              | 80                | 1                 | 4                 | <b>6100</b>       | 95                | 72                | <b>260</b>        | 27                | 280               |
| Total BOD <sub>5</sub>                 |        | 3                 | 2                 | 1                 | 1                 | 3                 | <1                | 3                 | 2                 | <1                | 1                 |
| Chloride                               |        | 48                | 146               | 534               | 353               | 16                | 313               | 649               | 297               | 141               | 118               |
| Total Phosphorus 0                     | .03    | 0.05              | 0.08              | <0.01             | 0.03              | 0.91              | 0.05              | 0.03              | 0.08              | <0.01             | 0.03              |
| Total Suspended Solids                 |        | 7                 | 7                 | 2                 | 3                 | 170               | 16                | 5                 | 6                 | <2                | 6                 |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                        |            | SW5               | SW5               | SW6               | SW6               | SW6                     | SW6               | SW6               | SW6               | SW6               | SW6                            |
|----------------------------------------|------------|-------------------|-------------------|-------------------|-------------------|-------------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------|
| Parameter                              |            | Cataract Rd.      | Cataract Rd.      | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy.       | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy.              |
|                                        |            | 2014-09-24        | 2014-12-01        | 2007-10-19        | 2007-12-05        | 2008-03-27              | 2008-08-06        | 2008-10-31        | 2008-12-16        | 2009-02-13        | 2009-04-06                     |
| Event Type                             |            | Dry               | Wet               | Wet               | Dry               | Freshet                 | Wet               | Dry               | Wet               | Dry               | Freshet                        |
| Event Phase                            |            | Post-Construction | Post-Construction | Pre-Construction  | Pre-Construction  | Pre-Construction        | Pre-Construction  | Pre-Construction  | Pre-Construction  | Pre-Construction  | Pre-Construction               |
| Field Analyses                         |            |                   |                   |                   |                   |                         |                   |                   |                   |                   |                                |
| Air Temperature (K)                    |            | 288.7             | 273.9             | 292.2             | 265.3             | 275.1                   | 295.2             | 283.0             | 266.8             | 271.0             | 274.4                          |
| pH (unitless)                          | 6.5 - 8.5  | 7.9               | 7.7               | 7.2               | 8.4               | 7.7                     | 7.9               | 6.8               | 7.4               | 7.8               | 7.3                            |
| Conductivity (µS/cm)                   |            | 1231              | 2770              | 1249              | 1260              | 360                     | 2343              | 1310              | 998               | 1295              | 480                            |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 9.9               | <b>7.0</b>        | 10.9              | 19.4              | 14.1                    | -                 | 7.4               | 14.4              | 11.8              | 11.8                           |
| Temperature (°C)                       |            | 13.7              | 2.0               | 19.6              | 0.5               | 4.5                     | 29.7              | 10.5              | 0.8               | 2.4               | 6.4                            |
| Temperature-based DO objective*        | calculated | 6.0               | 7.4               | 5.3               | 7.7               | 7.1                     | 4.4               | 6.3               | 7.6               | 7.4               | 6.8                            |
| Appearance                             |            | Clear             | Clear             | cloudy brown      | clear             | clear-light<br>brownish | yellowish         | clear             | yellow-brownish   | clear yellowish   | slightly cloudy<br>light brown |
| LABORATORY ANALYSES                    |            |                   |                   |                   |                   |                         |                   |                   |                   |                   |                                |
| pH (unitless)                          | 6.5 - 8.5  | 7.9               | 7.8               | 7.7               | 7.8               | 7.9                     | 8.0               | 7.8               | 7.9               | 7.9               | 7.9                            |
| Total Kjeldahl Nitrogen (TKN)          |            | 0.49              | 1.55              | 2.43              | 0.91              | 0.81                    | 2.49              | 0.43              | 0.82              | 0.96              | 1.8                            |
| Total Ammonia (as N)                   |            | 0.08              | 0.24              | 0.13              | 0.019669          | 0.08                    | 0.78              | 0.05              | 0.08              | 0.11              | 0.38                           |
| Un-ionized Ammonia (as N)              | 0.02       | 0.001             | 0.001             | 0.001             | 0.0004251         | 0.000                   | 0.045             | 0.000             | 0.000             | 0.001             | 0.001                          |
| Total Ammonia (as N, for calculations) |            | 0.08              | 0.24              | 0.13              | 0.019669          | 0.08                    | 0.78              | 0.05              | 0.08              | 0.11              | 0.38                           |
| Nitrate (as N)                         |            | <0.10             | 3.57              | 0.45              | 4.68              | 0.34                    | <0.10             | 0.23              | 1.16              | 0.72              | 0.41                           |
| Nitrite (as N)                         |            | <0.10             | <0.10             | <0.10             | <0.10             | <0.10                   | <0.10             | <0.10             | <0.10             | <0.10             | <0.10                          |
| Dissolved Nitrite + Nitrate            |            |                   |                   | -                 | -                 | -                       | -                 | -                 | -                 | -                 | -                              |
| E.coli (5TMPN/100ml)                   | 100        | 29                | 3350              | 3600              |                   | 1370                    | 69                | 70                | 840               | <b>1910</b>       | 80                             |
| Total BOD <sub>5</sub>                 |            | <1                | 3                 | 9                 | 2                 | 1                       | 9                 | 2                 | 2                 | <1                | 3                              |
| Chloride                               |            | 145               | 557               | 254               | 225               | 75                      | 465               | 238               | 176               | 331               | 64                             |
| Total Phosphorus                       | 0.03       | 0.02              | 0.20              | 0.25              | 0.11              | 0.11                    | 0.54              | 0.21              | 0.16              | 0.12              | 0.28                           |
| Total Suspended Solids                 |            | 3                 | 10                | 55                | 3                 | 21                      | 134               | 108               | 23                | 14                | 33                             |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                        |          | SW6               | SW6                              | SW6               | SW6                              | SW6               | SW6               | SW6               | SW6                    | SW6               | SW6               |
|----------------------------------------|----------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|------------------------|-------------------|-------------------|
| Parameter                              |          | Merrittville Hwy. | Merrittville Hwy.                | Merrittville Hwy. | Merrittville Hwy.                | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy.      | Merrittville Hwy. | Merrittville Hwy. |
|                                        |          | 2009-06-18        | 2009-09-10                       | 2009-09-10        | 2009-12-01                       | 2009-12-01        | 2010-03-09        | 2010-06-16        | 2010-09-03             | 2010-10-05        | 2011-03-29        |
| Event Type                             |          | Wet               | Dry                              | DUP               | Wet                              | DUP               | Freshet           | Wet               | Dry                    | Wet               | Dry               |
| Event Phase                            |          | Pre-Construction  | Pre-Construction                 | Pre-Construction  | Pre-Construction                 | Pre-Construction  | Pre-Construction  | Construction      | Construction           | Construction      | Post-Construction |
| Field Analyses                         |          |                   |                                  |                   |                                  |                   |                   |                   |                        |                   |                   |
| Air Temperature (K)                    |          | 287.8             | 291.6                            | 291.6             | 278.1                            | 278.1             | 277.1             | 293.0             | 294.8                  | 282.2             | 271.4             |
| pH (unitless) 6.                       | .5 - 8.5 | 8.2               | 7.9                              | 7.9               | 8.0                              | 8.0               | 7.3               | 7.8               | 7.1                    | 7.5               | 8.4               |
| Conductivity (µS/cm)                   |          | 1473              | 2343                             | 2343              | 877                              | 877               | 386               | 840               | >4000                  | 791               | 1221              |
| Dissolved Oxygen (Cold Water Biota) >5 | 5 to >8  | 6.7               | 3.2                              | 3.2               | 13.7                             | 13.7              | 13.1              | 4.3               | 2.2                    | 10.8              | 13.3              |
| Temperature (°C)                       |          | 17.4              | 23.7                             | 23.7              | 8.0                              | 8.0               | 5.9               | 23.5              | 24.5                   | 12.3              | 5.0               |
| Temperature-based DO objective* cal    | lculated | 5.6               | 4.9                              | 4.9               | 6.6                              | 6.6               | 6.9               | 4.9               | 4.9                    | 6.1               | 7.0               |
| Appearance                             |          | yellowish         | cloudy,<br>sediment in<br>sample |                   | cloudy,<br>sediment in<br>sample |                   | clear yellowish   | slightly cloudy   | slight cloudy<br>brown | brown             | clear yellowish   |
| LABORATORY ANALYSES                    |          |                   |                                  |                   |                                  |                   |                   |                   |                        |                   |                   |
| pH (unitless) 6.                       | .5 - 8.5 | 7.9               | 7.9                              | 7.8               | 7.9                              | 8.0               | 7.7               | 7.9               | 7.9                    | 7.8               | 7.9               |
| Total Kjeldahl Nitrogen (TKN)          |          | 0.54              | 0.89                             | 0.92              | 0.87                             | 0.72              | 0.77              | 0.79              | 1.74                   | 1.71              | 1.73              |
| Total Ammonia (as N)                   |          | 0.07              | 0.07                             | 0.07              | 0.14                             | 0.14              | 0.36              | 0.2               | 0.83                   | 0.73              | 0.7               |
| Un-ionized Ammonia (as N)              | 0.02     | 0.004             | 0.002                            | 0.002             | 0.002                            | 0.002             | 0.001             | 0.007             | 0.005                  | 0.005             | 0.023             |
| Total Ammonia (as N, for calculations) |          | 0.07              | 0.07                             | 0.07              | 0.14                             | 0.14              | 0.36              | 0.2               | 0.83                   | 0.73              | 0.7               |
| Nitrate (as N)                         |          | <1.0              | <0.10                            | <0.10             | 0.55                             | 0.51              | 0.29              | 0.14              | 7.62                   | 1.20              | 0.24              |
| Nitrite (as N)                         |          | <1.0              | <0.10                            | <0.10             | <0.10                            | <0.10             | <0.10             | <0.10             | <1.0                   | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |          | -                 | -                                | -                 | -                                | -                 | -                 | -                 | -                      | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100      | 3600              | 80                               | 100               | 92                               | 103               | <b>1450</b>       | 870               | <b>420</b>             | 970               | 8400              |
| Total BOD <sub>5</sub>                 |          | 3                 | 2                                | 3                 | 1                                | <1                | 4                 | 2                 | 8                      | 2                 | 4                 |
| Chloride                               |          | 301               | 725                              | 715               | 130                              | 132               | 62                | 181               | 978                    | 137               | 584               |
| Total Phosphorus                       | 0.03     | 0.07              | 0.39                             | 0.43              | 0.18                             | 0.22              | 0.14              | 0.28              | 0.18                   | 0.29              | 0.17              |
| Total Suspended Solids                 |          | 15                | 217                              | 357               | 18                               | 11                | 21                | 83                | 175                    | 459               | 10                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                        |          | SW6               |
|----------------------------------------|----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |          | Merrittville Hwy. |
|                                        |          | 2011-06-06        | 2011-06-24        | 2011-09-30        | 2011-11-29        | 2012-03-15        | 2012-04-25        | 2012-07-04        | 2012-07-27        | 2012-10-10        | 2012-12-05        |
| Event Type                             |          | Freshet           | Wet               | Dry               | Wet               | Dry               | Freshet           | Wet               | Wet               | Dry               | Wet               |
| Event Phase                            |          | Post-Construction |
| Field Analyses                         |          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |          | 292.2             | 292.4             | 286.2             | 279.4             | 285.5             | 279.5             | 273.2             | 296.3             | 282.1             | 274.0             |
| pH (unitless) 6.                       | .5 - 8.5 | 7.6               | 7.7               | 8.1               | 8.1               | 7.6               | 7.8               | 7.4               | 7.4               | 7.8               | 7.8               |
| Conductivity (µS/cm)                   |          | 3290              | 1826              | 633               | 202               | 2630              | 1163              | 2240              | 2000              | 745               | 1147              |
| Dissolved Oxygen (Cold Water Biota) >5 | 5 to >8  | 7.0               | 3.3               | 7.6               | 11.1              | 3.6               | 12.2              | 9.2               | 3.6               | 6.8               | 7.2               |
| Temperature (°C)                       |          | 19.9              | 20.1              | 16.0              | 6.8               | 6.9               | 7.4               | 23.0              | 22.9              | 13.6              | 6.3               |
| Temperature-based DO objective* cal    | lculated | 5.3               | 5.3               | 5.7               | 6.8               | 6.8               | 6.7               | 5.0               | 5.0               | 6.0               | 6.9               |
| Appearance                             |          | yellowish         | grayish           | cloudy            | brownish          | yellowish         | yellowish         | brown             | yellowish         | yellowish         |                   |
| LABORATORY ANALYSES                    |          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless) 6.                       | .5 - 8.5 | 8.0               | 7.7               | 7.8               | 7.6               | 8.0               | 7.9               | 7.7               | 7.4               | 7.8               | 8.0               |
| Total Kjeldahl Nitrogen (TKN)          |          | 1.68              | 3.63              | 0.75              | 1.04              | 0.67              | 1.25              | 6.73              | 2.96              | 1.14              | 0.73              |
| Total Ammonia (as N)                   |          | 0.88              | 0.98              | 0.24              | 0.02              | 0.14              | 0.05              | 0.57              | 0.39              | 0.13              | 0.02              |
| Un-ionized Ammonia (as N)              | 0.02     | 0.014             | 0.020             | 0.008             | 0.000             | 0.001             | 0.000             | 0.008             | 0.004             | 0.002             | 0.000             |
| Total Ammonia (as N, for calculations) |          | 0.88              | 0.98              | 0.24              | 0.02              | 0.14              | 0.05              | 0.57              | 0.39              | 0.13              | 0.02              |
| Nitrate (as N)                         |          | 0.26              | 0.19              | 0.70              | 0.28              | 0.26              | 0.36              | <0.10             | 0.30              | 0.72              | 0.30              |
| Nitrite (as N)                         |          | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |          | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100      | <b>790</b>        | 4200              | <b>1970</b>       | <mark>161</mark>  | 89                | <del>570</del>    | 50                | 860               | 1320              | <b>260</b>        |
| Total BOD <sub>5</sub>                 |          | 2                 | 8                 | 2                 | 3                 | <1                | 2                 | 59                | 6                 | 4                 | 2                 |
| Chloride                               |          | 789               | 348               | 78                | 14                | 566               | 200               | 436               | 400               | 70                | 151               |
| Total Phosphorus                       | 0.03     | 0.21              | 0.44              | 0.14              | 0.05              | 0.06              | 0.14              | 0.83              | 0.28              | 0.14              | 0.11              |
| Total Suspended Solids                 |          | 12                | 104               | 35                | 62                | 7                 | 36                | 6780              | 317               | 37                | 9                 |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

### wsp

#### **Regional Road 20 Redevelopment**

| Parameter                                   |                   |                   |                   |                   | SW6<br>Merrittville Hwy.<br>2013-12-10 |                   |                   |                   |                   |                   |
|---------------------------------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Event Type                                  | Freshet           | Dry               | Wet               | Dry               | Wet                                    | Freshet           | Dry               | Wet               | Dry               | Wet               |
| Event Phase                                 | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction                      | Post-Construction | Post-Construction | Post-Construction | Post-Construction | Post-Construction |
| Field Analyses                              |                   |                   |                   |                   |                                        |                   |                   |                   |                   |                   |
| Air Temperature (K)                         | 276.6             | 289.6             | 289.7             | 285.7             | 267.9                                  | 273.0             | 283.1             | 288.5             | 288.7             | 273.9             |
| pH (unitless) 6.5 - 8.                      | 5 8.3             | 7.7               | 7.6               | 7.6               | 7.9                                    | 7.9               | 8.0               | 7.2               | 7.4               | 7.7               |
| Conductivity (µS/cm)                        | 2770              | 4110              | 362               | 1454              | 3520                                   | 4570              | 3360              | 2920              | 1899              | 3060              |
| Dissolved Oxygen (Cold Water Biota) >5 to > | 8 <b>7.3</b>      | 3.8               | 6.0               | 4.0               | <b>5.3</b>                             | 9.2               | <b>6.1</b>        | 5.8               | 6.0               | 7.5               |
| Temperature (°C)                            | 2.5               | 9.8               | 17.2              | 15.9              | 3.4                                    | 0.7               | 7.9               | 16.9              | 13.8              | 2.1               |
| Temperature-based DO objective* calculate   | ed 7.4            | 6.4               | 5.6               | 5.7               | 7.2                                    | 7.6               | 6.6               | 5.6               | 5.9               | 7.4               |
| Appearance                                  | Clear             | Clear             | Cloudy brown      | Clear             | Clear                                  | Clear             | Clear             | Clear             | Clear             | Clear             |
| LABORATORY ANALYSES                         |                   |                   |                   |                   |                                        |                   |                   |                   |                   |                   |
| pH (unitless) 6.5 - 8.                      | 5 8.1             | 7.8               | 7.8               | 8.0               | 7.9                                    | 7.6               | 7.9               | 7.8               | 7.7               | 7.7               |
| Total Kjeldahl Nitrogen (TKN)               | 1.22              | 0.71              | 1.14              | 0.58              | 0.66                                   | 0.82              | 0.81              | 0.74              | 0.54              | 1.06              |
| Total Ammonia (as N)                        | 0.34              | 0.19              | 0.09              | 0.1               | 0.18                                   | 0.22              | 0.13              | 0.18              | 0.15              | 0.03              |
| Un-ionized Ammonia (as N) 0.02              | 0.007             | 0.002             | 0.001             | 0.001             | 0.001                                  | 0.002             | 0.002             | 0.001             | 0.001             | 0.000             |
| Total Ammonia (as N, for calculations)      | 0.34              | 0.19              | 0.09              | 0.1               | 0.18                                   | 0.22              | 0.13              | 0.18              | 0.15              | 0.03              |
| Nitrate (as N)                              | 0.28              | 0.66              | 0.40              | 0.32              | 0.81                                   | 0.39              | 0.49              | 0.46              | <0.10             | 0.39              |
| Nitrite (as N)                              | <0.10             | <0.10             | <0.10             | <0.10             | <0.10                                  | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate                 |                   |                   |                   |                   |                                        |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml) 100                    | <mark>680</mark>  | 5                 | <b>5200</b>       | <mark>164</mark>  | 1330                                   | 1420              | 17                | 190               | 42                | 130               |
| Total BOD <sub>5</sub>                      | 2                 | 1                 | 2                 | <1                | <1                                     | 2                 | <1                | <1                | 3                 | 2                 |
| Chloride                                    | 792               | 943               | 34                | 170               | 790                                    | 1240              | 764               | 647               | 297               | 196               |
| Total Phosphorus 0.03                       | 0.10              | 0.09              | 0.29              | 0.08              | 0.07                                   | 0.11              | 0.08              | 0.12              | 0.08              | 0.20              |
| Total Suspended Solids                      | 6                 | 14                | 24                | 22                | 11                                     | 11                | 5                 | 12                | 35                | 24                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

|                                           | SW6                | SW6                 | SW6                  | SW6               | SW6               | SW7               | SW7               | SW7               | SW7               | SW7               |
|-------------------------------------------|--------------------|---------------------|----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                                 | Merrittville Hwy   | . Merrittville Hwy. | . Merrittville Hwy.  | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. |
|                                           | 2015-03-12         | 2 2015-05-13        | 2015-06-09           | 2015-09-30        | 2015-10-29        | 2007-10-19        | 2007-12-05        | 2008-03-27        | 2008-08-06        | 2008-10-31        |
| Event Type                                | Freshet            | Dry                 | Wet                  | Dry               | Wet               | Wet               | Dry               | Freshet           | Wet               | Dry               |
| Event Phase                               | Post-Construction  | n Post-Construction | Post-Construction    | Post-Construction | Post-Construction | Pre-Construction  | Pre-Construction  | Pre-Construction  | Pre-Construction  | Pre-Construction  |
| Field Analyses                            |                    |                     |                      |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                       | 272.2              | 273.2               | 289.7                | 285.9             | 283.0             | 292.2             | 265.3             | 275.1             | 295.2             | 283.0             |
| pH (unitless) 6.5 -                       | 3.5 6.7            | 7.8                 | 7.5                  | 8.0               | 7.9               | 7.1               | 8.4               | 8.3               | 7.8               | 6.9               |
| Conductivity (µS/cm)                      | 4380               | 6020                | 1145                 | 1295              | 785               | 1281              | 1360              | 515               | 1654              | 1171              |
| Dissolved Oxygen (Cold Water Biota) >5 to | >8 9.1             | 8.9                 | 13.4                 | 6.1               | 7.3               | 9.7               | 19.6              | 13.4              | -                 | 7.8               |
| Temperature (°C)                          | 0.2                | 12.3                | 17.3                 | 17.6              | 11.0              | 19.6              | 0.4               | 3.8               | 24.3              | 11.0              |
| Temperature-based DO objective* calcul    | ated 7.7           | 6.1                 | 5.6                  | 5.5               | 6.3               | 5.3               | 7.7               | 7.2               | 4.9               | 6.3               |
| Appearance                                | Clear              | Clear               | Slightly cloudy grey | Clear yellowish   | slightly cloudy   | cloudy brown      | clear             | clear yellow      | clear yellowish   | clear             |
| LABORATORY ANALYSES                       |                    |                     |                      |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless) 6.5 -                       | 3.5 7.6            | 7.7                 | 7.9                  | 8.1               | 7.7               | 7.5               | 7.8               | 7.9               | 7.8               | 7.9               |
| Total Kjeldahl Nitrogen (TKN)             | 1.87               | 0.75                | 1.37                 | 0.63              | 1.04              | 1.56              | 1.27              | 0.78              | 1.53              | 0.41              |
| Total Ammonia (as N)                      | 0.57               | 0.1                 | 0.22                 | 0.06              | 0.03              | 0.2               | 0.37              | 0.09              | 0.12              | 0.16              |
| Un-ionized Ammonia (as N) 0.0             | 0.000              | 0.001               | 0.002                | 0.002             | 0.000             | 0.001             | 0.008             | 0.002             | 0.004             | 0.000             |
| Total Ammonia (as N, for calculations)    | 0.57               | 0.1                 | 0.22                 | 0.06              | 0.03              | 0.2               | 0.37              | 0.09              | 0.12              | 0.16              |
| Nitrate (as N)                            | <2                 | <5                  | 0.35                 | 0.29              | 2.96              | 0.52              | 4.30              | 0.49              | <0.10             | <0.10             |
| Nitrite (as N)                            | <2                 | <5                  | <0.25                | <0.25             | <0.25             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate               |                    |                     |                      |                   |                   | -                 | -                 | =                 | -                 | -                 |
| E.coli (5TMPN/100ml) 10                   | 1 <mark>910</mark> | <b>1300</b>         | 7800                 | <b>1250</b>       | <b>1700</b>       | 4300              |                   | 417               | <mark>162</mark>  | 90                |
| Total BOD <sub>5</sub>                    | 7                  | <5                  | <5                   | <5                | <5                | 9                 | 1                 | <1                | 6                 | 1                 |
| Chloride                                  | 1640               | 3040                | 249                  | 277               | 129               | 251               | 254               | 99                | 330               | 164               |
| Total Phosphorus 0.0                      | 3 <b>0.20</b>      | 0.06                | 0.18                 | 0.06              | 0.12              | 0.39              | 0.10              | 0.10              | 0.24              | 0.10              |
| Total Suspended Solids                    | 11                 | <10                 | 45                   | <10               | 14                | 96                | 4                 | 16                | 11                | 12                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

### wsp

#### **Regional Road 20 Redevelopment**

|                                        |           | SW7               | SW7               | SW7                            | SW7               | SW7               | SW7               | SW7               | SW7               | SW7               | SW7               |
|----------------------------------------|-----------|-------------------|-------------------|--------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |           | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy.              | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. | Merrittville Hwy. |
|                                        |           | 2008-12-16        | 2009-02-13        | 2009-04-06                     | 2009-06-18        | 2009-09-10        | 2009-12-01        | 2010-03-09        | 2010-06-16        | 2010-09-03        | 2010-10-05        |
| Event Type                             |           | Wet               | Dry               | Freshet                        | Wet               | Dry               | Wet               | Freshet           | Wet               | Dry               | Wet               |
| Event Phase                            |           | Pre-Construction  | Pre-Construction  | Pre-Construction               | Pre-Construction  | Pre-Construction  | Pre-Construction  | Pre-Construction  | Construction      | Construction      | Construction      |
| Field Analyses                         |           |                   |                   |                                |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |           | 266.8             | 271.0             | 274.4                          | 287.8             | 291.6             | 278.1             | 277.1             | 293.0             | 294.8             | 282.2             |
| pH (unitless)                          | 6.5 - 8.5 | 7.5               | 7.8               | 7.2                            | 8.2               | 7.9               | 7.9               | 7.5               | 7.9               | 7.3               | 7.6               |
| Conductivity (µS/cm)                   |           | 1070              | 1429              | 470                            | 1422              | 1810              | 922               | 375               | 960               | 1755              | 944               |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8  | 14.2              | 11.5              | 12.0                           | 6.8               | <b>1.8</b>        | 14.4              | 12.8              | 6.1               | 2.0               | 10.5              |
| Temperature (°C)                       |           | 0.0               | 2.4               | 6.5                            | 17.2              | 21.5              | 7.9               | 5.3               | 24.1              | 23.9              | 12.7              |
| Temperature-based DO objective*        | alculated | 7.7               | 7.4               | 6.8                            | 5.6               | 5.1               | 6.6               | 7.0               | 4.9               | 4.9               | 6.1               |
| Appearance                             |           | clear yellowish   | clear yellowish   | slightly cloudy<br>light brown | yellowish         | cloudy greyish    | clear yellowish   | cloudy yellowish  | clear             | Cloudy Grey       | cloudy brown      |
| LABORATORY ANALYSES                    |           |                   |                   |                                |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless)                          | 6.5 - 8.5 | 7.8               | 7.9               | 7.8                            | 7.8               | 7.8               | 7.9               | 7.7               | 7.9               | 8.0               | 7.8               |
| Total Kjeldahl Nitrogen (TKN)          |           | 0.91              | 0.85              | 1.65                           | 0.66              | 1.34              | 0.81              | 0.7               | 1.21              | 3.83              | 1.19              |
| Total Ammonia (as N)                   |           | 0.08              | 0.14              | 0.1                            | 0.14              | 0.67              | 0.18              | 0.17              | 0.2               | 1.18              | 0.19              |
| Un-ionized Ammonia (as N)              | 0.02      | 0.000             | 0.001             | 0.000                          | 0.007             | 0.021             | 0.002             | 0.001             | 0.008             | 0.012             | 0.002             |
| Total Ammonia (as N, for calculations) |           | 0.08              | 0.14              | 0.1                            | 0.14              | 0.67              | 0.18              | 0.17              | 0.2               | 1.18              | 0.19              |
| Nitrate (as N)                         |           | 0.99              | 0.81              | 0.42                           | 0.60              | <0.10             | 0.50              | 0.30              | 0.27              | <1.0              | 1.79              |
| Nitrite (as N)                         |           | <0.10             | <0.10             | <0.10                          | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <1.0              | <0.10             |
| Dissolved Nitrite + Nitrate            |           | -                 | -                 | -                              | -                 | -                 | -                 | -                 | -                 | -                 | -                 |
| E.coli (5TMPN/100ml)                   | 100       | <b>316</b>        | <b>1200</b>       | <b>360</b>                     | <mark>4180</mark> | 90                | <b>141</b>        | 930               | <mark>790</mark>  | 10                | 820               |
| Total BOD₅                             |           | 2                 | 1                 | 2                              | 2                 | 2                 | <1                | 3                 | 3                 | 10                | 2                 |
| Chloride                               |           | 194               | 376               | 70                             | 276               | 482               | 142               | 65                | 223               | 321               | 184               |
| Total Phosphorus                       | 0.03      | <b>0.19</b>       | <b>0.15</b>       | 0.30                           | 0.10              | 0.01              | 0.20              | 0.15              | 0.21              | 0.95              | 0.14              |
| Total Suspended Solids                 |           | 18                | 9                 | 35                             | 23                | 26                | 13                | 19                | 32                | 1980              | 185               |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

## wsp

#### **Regional Road 20 Redevelopment**

| Parameter  Event Type                  |            |                 |                  |            |             | SW7 Merrittville Hwy. 2011-11-29 Wet |                  |             |                   |                   |                  |
|----------------------------------------|------------|-----------------|------------------|------------|-------------|--------------------------------------|------------------|-------------|-------------------|-------------------|------------------|
| Event Phase                            |            |                 |                  |            |             | Post-Construction                    |                  |             | Post-Construction | Post-Construction |                  |
| Field Analyses                         |            |                 |                  |            |             |                                      |                  |             |                   |                   |                  |
| Air Temperature (K)                    |            | 271.4           | 292.2            | 292.4      | 286.2       | 279.4                                | 285.5            | 279.5       | 273.2             | 296.3             | 282.1            |
| pH (unitless)                          | 6.5 - 8.5  | 8.4             | 8.0              | 7.7        | 8.1         | 8.1                                  | 7.3              | 7.9         | 7.8               | 7.7               | 7.8              |
| Conductivity (µS/cm)                   |            | 2710            | 2887             | 2093       | 622         | 215                                  | 2580             | 1200        | 2230              | 1536              | 740              |
| Dissolved Oxygen (Cold Water Biota)    | >5 to >8   | 14.2            | 17.5             | 2.0        | 7.4         | 11.1                                 | 8.1              | 8.9         | 6.1               | 5.6               | 7.7              |
| Temperature (°C)                       |            | 5.5             | 24.5             | 21.0       | 16.0        | 6.9                                  | 6.4              | 12.2        | 24.7              | 25.3              | 12.6             |
| Temperature-based DO objective*        | calculated | 7.0             | 4.9              | 5.2        | 5.7         | 6.8                                  | 6.8              | 6.1         | 4.8               | 4.8               | 6.1              |
| Appearance                             |            | clear yellowish |                  | yellowish  | cloudy      | brownish                             | yellowish        | clear       | brownish          | yellowish         | cloudy brown     |
| LABORATORY ANALYSES                    |            |                 |                  |            |             |                                      |                  |             |                   |                   |                  |
| pH (unitless)                          | 6.5 - 8.5  | 7.9             | 8.2              | 7.8        | 7.8         | 7.6                                  | 8.0              | 8.0         | 7.7               | 7.6               | 7.8              |
| Total Kjeldahl Nitrogen (TKN)          |            | 1.32            | 1.13             | 3.1        | 0.82        | 1.08                                 | 0.91             | 1.05        | 1.95              | 2.33              | 1.04             |
| Total Ammonia (as N)                   |            | 0.3             | 0.49             | 0.83       | 0.03        | 0.02                                 | 0.14             | 0.12        | 0.22              | 0.42              | 0.16             |
| Un-ionized Ammonia (as N)              | 0.02       | 0.009           | 0.025            | 0.017      | 0.001       | 0.000                                | 0.000            | 0.002       | 0.007             | 0.011             | 0.002            |
| Total Ammonia (as N, for calculations) |            | 0.3             | 0.49             | 0.83       | 0.03        | 0.02                                 | 0.14             | 0.12        | 0.22              | 0.42              | 0.16             |
| Nitrate (as N)                         |            | 0.32            | 0.15             | <0.10      | 0.64        | 0.29                                 | 0.23             | 0.43        | 0.11              | 0.14              | 0.65             |
| Nitrite (as N)                         |            | <0.10           | 0.11             | <0.10      | <0.10       | <0.10                                | <0.10            | <0.10       | <0.10             | <0.10             | <0.10            |
| Dissolved Nitrite + Nitrate            |            | =               | -                | -          | =           | =                                    | -                | -           | =                 | -                 | -                |
| E.coli (5TMPN/100ml)                   | 100        | <b>5700</b>     | <mark>750</mark> | <b>170</b> | <b>1760</b> | <mark>184</mark>                     | <mark>136</mark> | <b>1060</b> | 60                | <b>670</b>        | <mark>810</mark> |
| Total BOD <sub>5</sub>                 |            | 2               | 3                | 4          | 1           | 3                                    | 2                | 2           | 7                 | 5                 | 5                |
| Chloride                               |            | 572             | 668              | 395        | 74          | 15                                   | 526              | 206         | 330               | 242               | 72               |
| Total Phosphorus                       | 0.03       | 0.13            | 0.20             | 0.23       | 0.12        | 0.08                                 | 0.07             | 0.11        | 0.21              | 0.09              | 0.11             |
| Total Suspended Solids                 |            | 14              | 11               | 34         | 24          | 78                                   | 24               | 19          | 96                | 72                | 52               |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)

<sup>·</sup> Shading indicates parameters exceed PWQO

 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e  $^{0.012\text{k}})$ 

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

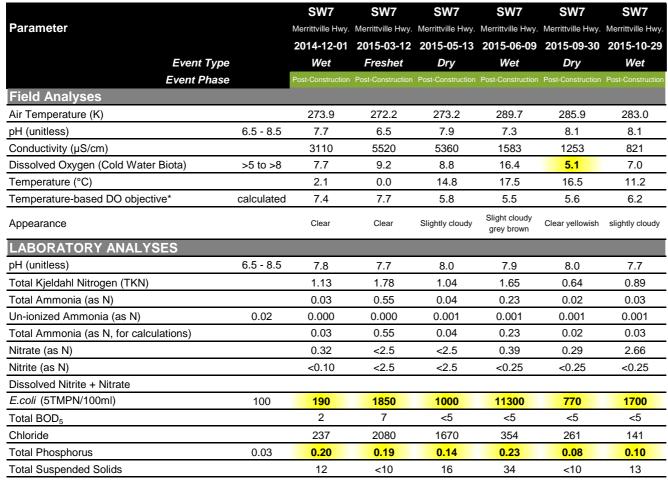
## wsp

#### **Regional Road 20 Redevelopment**

|                                        |        | SW7               |
|----------------------------------------|--------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Parameter                              |        | Merrittville Hwy. |
|                                        |        | 2012-12-05        | 2013-03-27        | 2013-05-02        | 2013-06-13        | 2013-10-10        | 2013-12-10        | 2014-03-18        | 2014-04-25        | 2014-06-04        | 2014-09-24        |
| Event Type                             |        | Wet               | Freshet           | Dry               | Wet               | Dry               | Wet               | Freshet           | Dry               | Wet               | Dry               |
| Event Phase                            |        | Post-Construction |
| Field Analyses                         |        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| Air Temperature (K)                    |        | 274.0             | 276.6             | 289.6             | 289.7             | 285.7             | 267.9             | 273.0             | 283.1             | 288.5             | 288.7             |
| pH (unitless) 6.5                      | - 8.5  | 7.9               | <b>8.7</b>        | 7.8               | 7.7               | 7.5               | 7.8               | 7.6               | 8.3               | 7.5               | 7.4               |
| Conductivity (µS/cm)                   |        | 1194              | 3150              | 3420              | 372               | 1452              | 3870              | 4660              | 2950              | 2540              | 2100              |
| Dissolved Oxygen (Cold Water Biota) >5 | to >8  | 7.6               | 11.3              | <b>5.9</b>        | 7.3               | 9.7               | 8.2               | 8.5               | 9.9               | 7.9               | 7.4               |
| Temperature (°C)                       |        | 5.3               | 3.3               | 12.9              | 12.4              | 15.6              | 0.9               | 1.2               | 8.1               | 19.8              | 15.8              |
| Temperature-based DO objective* calc   | ulated | 7.0               | 7.3               | 6.0               | 6.1               | 5.7               | 7.6               | 7.6               | 6.6               | 5.3               | 5.7               |
| Appearance                             |        |                   | Clear             | Clear             | Cloudy brown      | Clear             | Clear             | Clear             | Clear             | Clear             | Clear             |
| LABORATORY ANALYSES                    |        |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| pH (unitless) 6.5                      | - 8.5  | 8.0               | 8.1               | 8.0               | 7.8               | 8.1               | 7.9               | 7.6               | 8.0               | 7.9               | 7.8               |
| Total Kjeldahl Nitrogen (TKN)          |        | 0.75              | 1.07              | 1.07              | 1.48              | 0.6               | 0.81              | 0.76              | 0.78              | 0.74              | 0.49              |
| Total Ammonia (as N)                   |        | 0.02              | 0.26              | 0.1               | 0.11              | 0.07              | 0.22              | 0.18              | 0.08              | 0.12              | 0.07              |
| Un-ionized Ammonia (as N) 0            | .02    | 0.000             | 0.013             | 0.002             | 0.001             | 0.001             | 0.001             | 0.001             | 0.002             | 0.001             | 0.000             |
| Total Ammonia (as N, for calculations) |        | 0.02              | 0.26              | 0.1               | 0.11              | 0.07              | 0.22              | 0.18              | 0.08              | 0.12              | 0.07              |
| Nitrate (as N)                         |        | 0.27              | 0.84              | 0.20              | 0.26              | 0.22              | 0.60              | 0.34              | 0.31              | 0.25              | <0.10             |
| Nitrite (as N)                         |        | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             | <0.10             |
| Dissolved Nitrite + Nitrate            |        | -                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| E.coli (5TMPN/100ml)                   | 100    | 210               | 78                | 13                | 5300              | 36                | 1070              | 480               | 7                 | 210               | 5                 |
| Total BOD <sub>5</sub>                 |        | 3                 | 2                 | 2                 | 3                 | <1                | 3                 | 2                 | <1                | <1                | <1                |
| Chloride                               |        | 155               | 924               | 729               | 36                | 166               | 962               | 1140              | 673               | 525               | 266               |
| Total Phosphorus 0                     | 0.03   | 0.09              | 0.08              | 0.07              | 0.26              | 0.08              | 0.08              | 0.10              | 0.09              | 0.13              | 0.09              |
| Total Suspended Solids                 |        | 7                 | 6                 | 9                 | 48                | 7                 | 7                 | 9                 | 5                 | 16                | 11                |

 $<sup>\</sup>cdot$  All parameters are mg/L unless otherwise indicated.

<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)


<sup>·</sup> Shading indicates parameters exceed PWQO

<sup>\* -</sup> Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y =  $7.7259e^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay

#### **Surface Water Quality**

#### **Regional Road 20 Redevelopment**

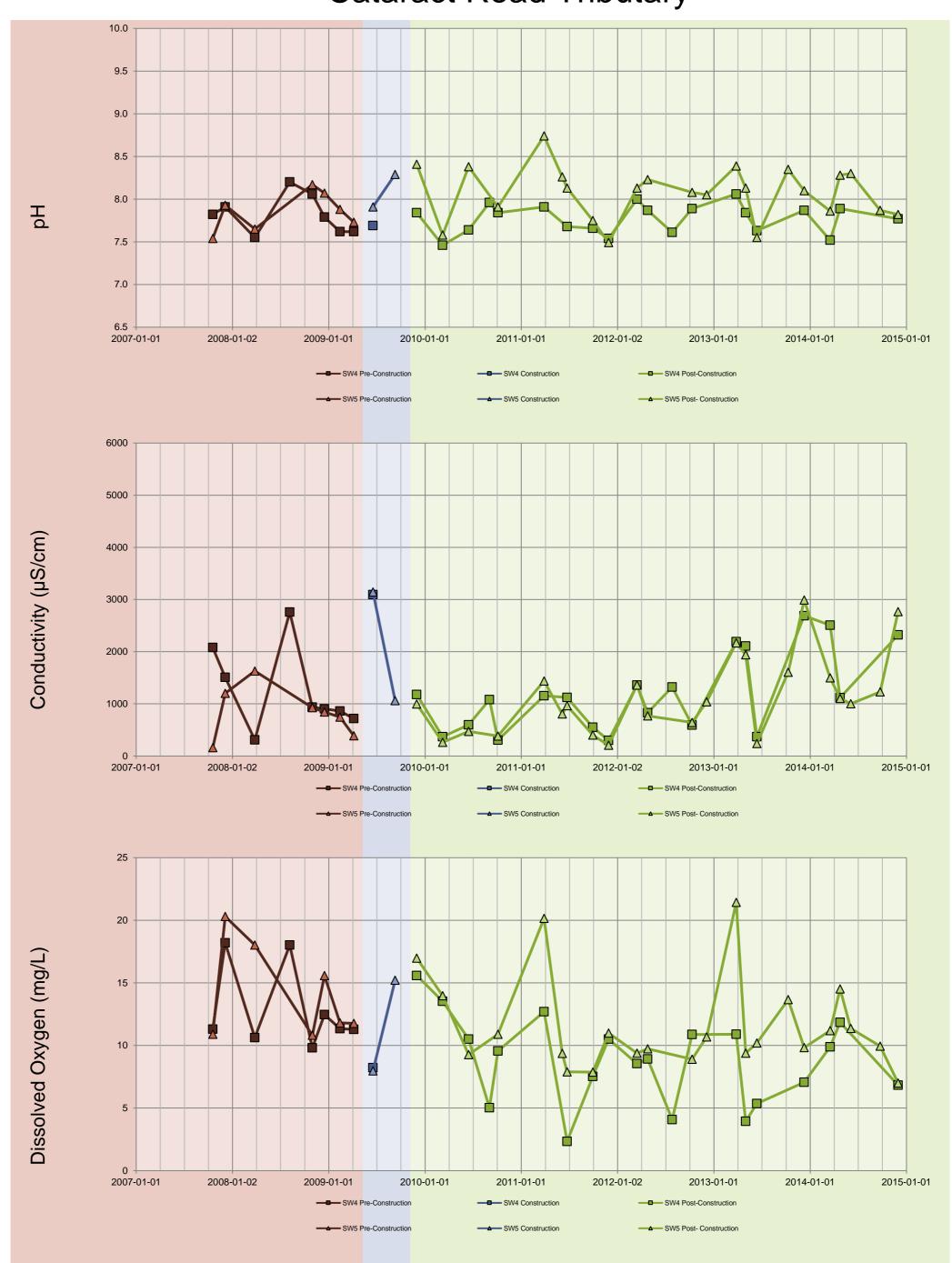




<sup>·</sup> All parameters are mg/L unless otherwise indicated.



<sup>·</sup> PWQO - Provincial Water Quality Objectives (1999)


<sup>·</sup> Shading indicates parameters exceed PWQO

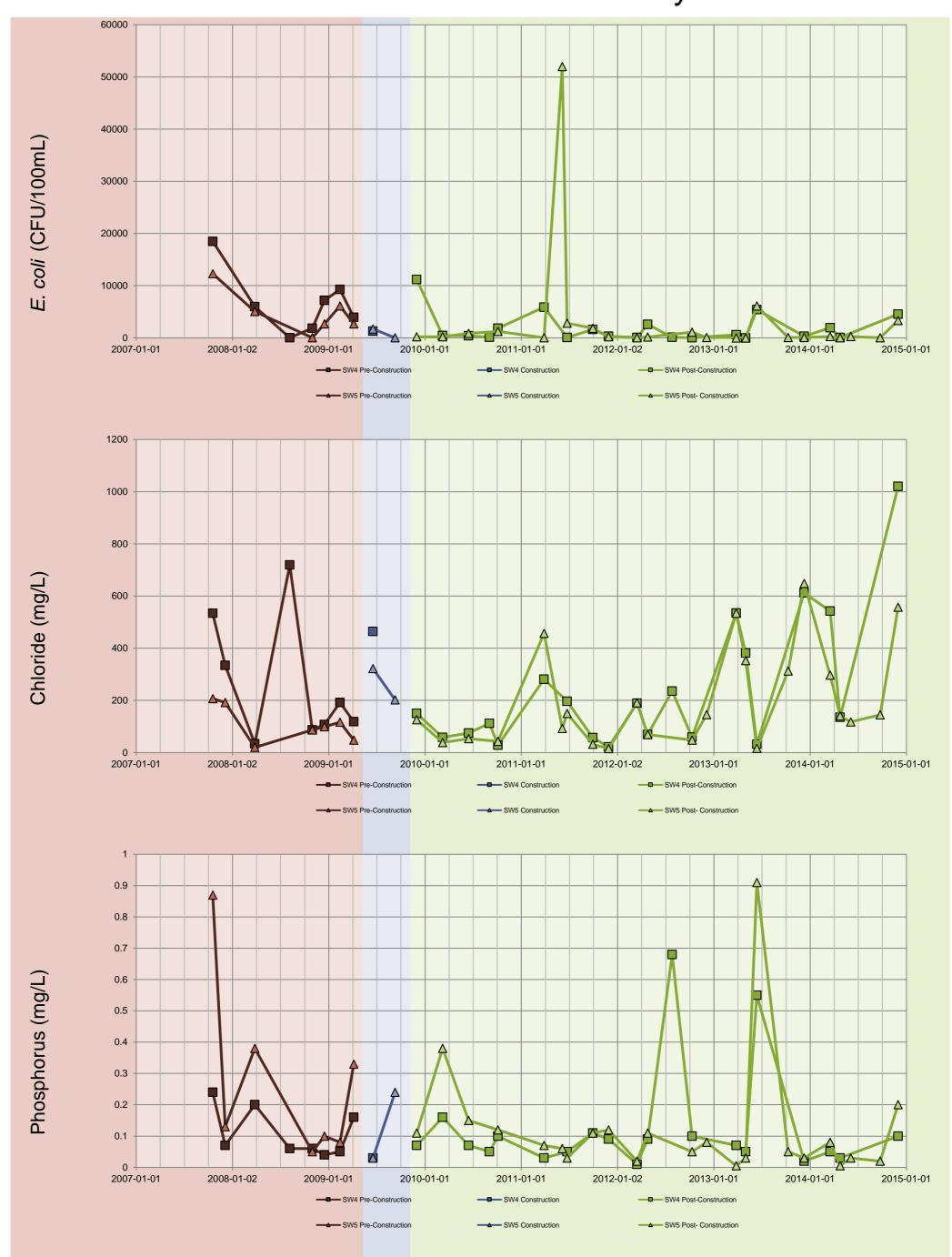
 $<sup>^{\</sup>star}$  - Twelve Mile Creek - Cold Water Biota Criteria relative to temperature (y = 7.7259e $^{-0.019x}$ )

<sup>\*\* -</sup> E.coli results may be elevated due to 1-day lab analysis delay



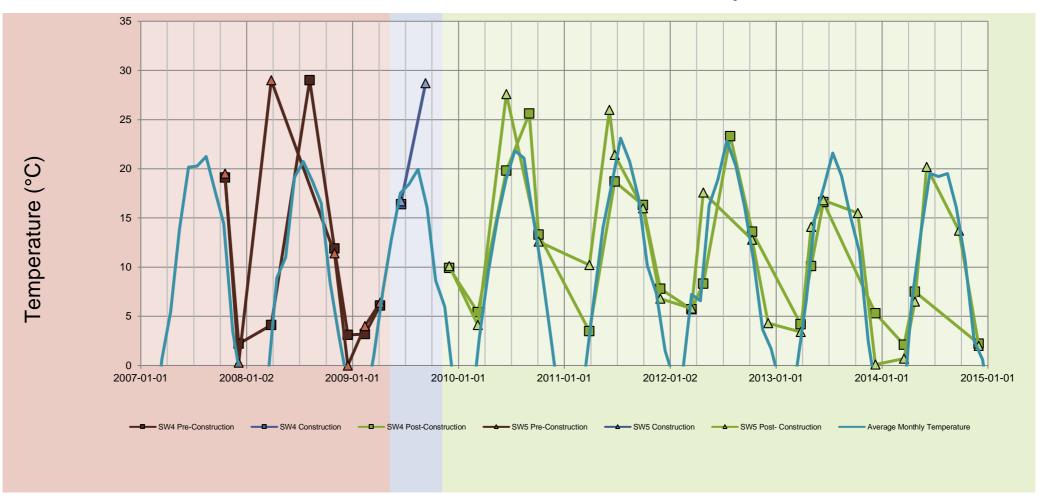
# Figure C-1 Surface Water Quality Cataract Road Tributary



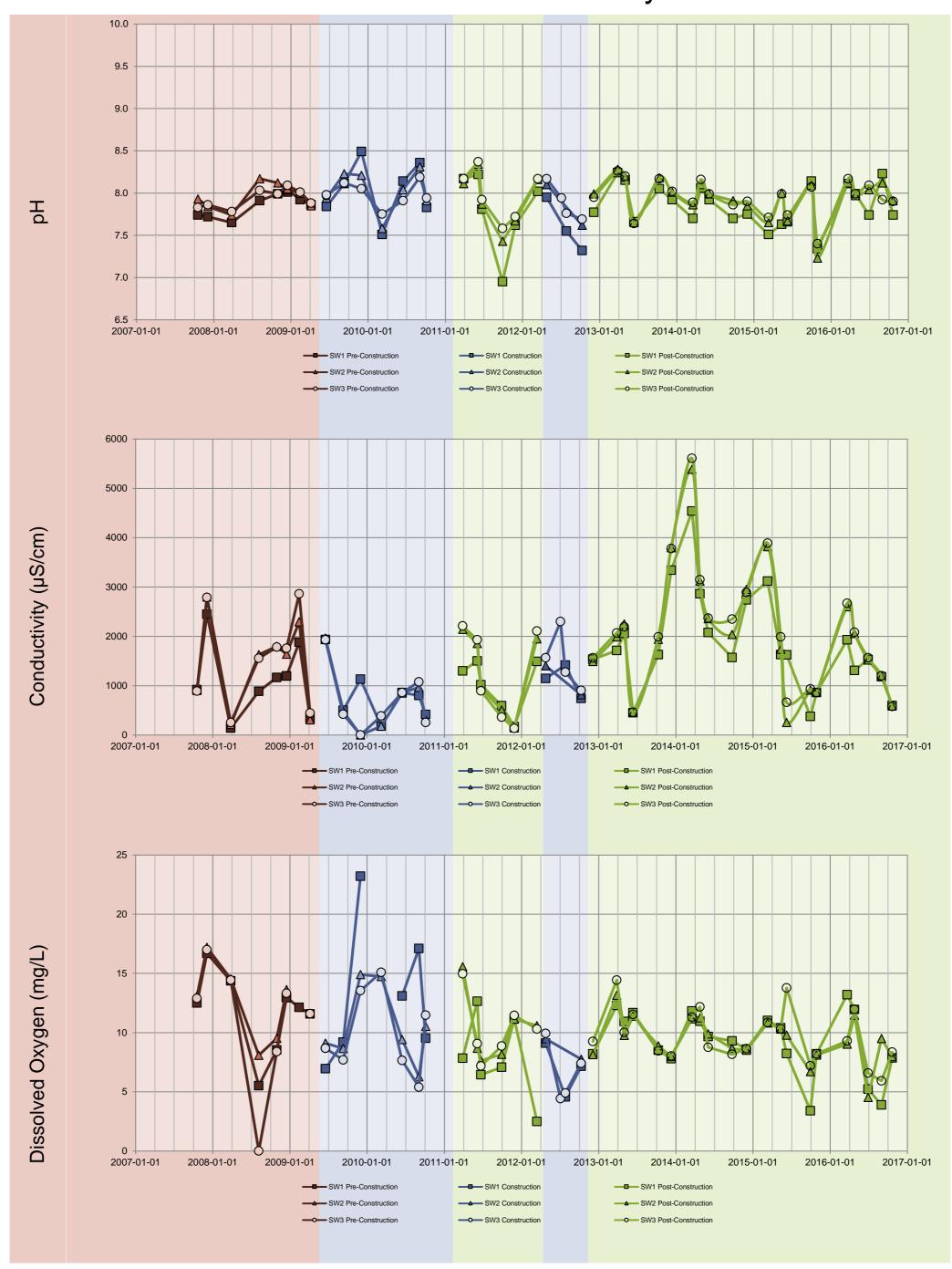



## Figure C-1 Surface Water Quality Cataract Road Tributary

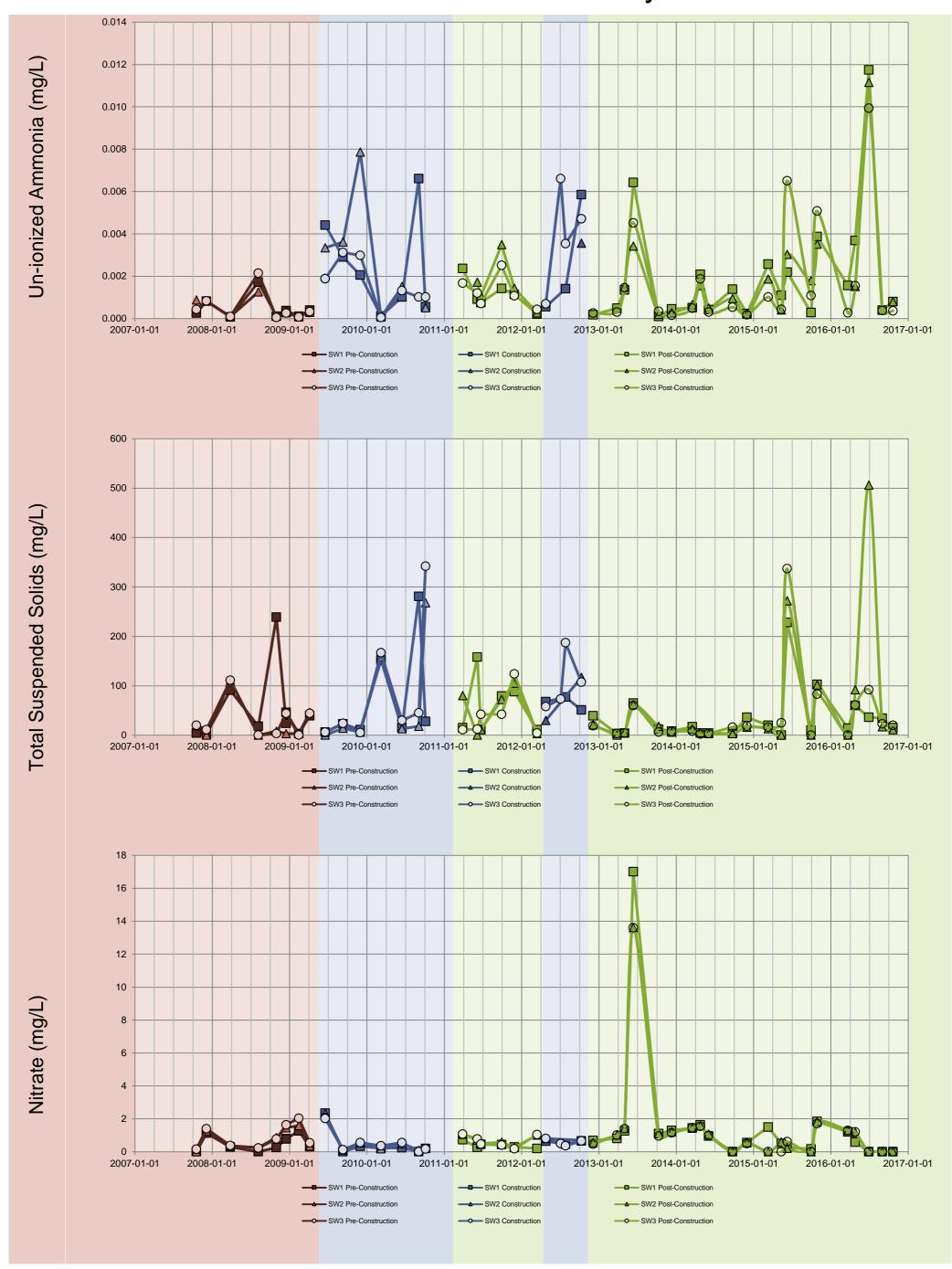




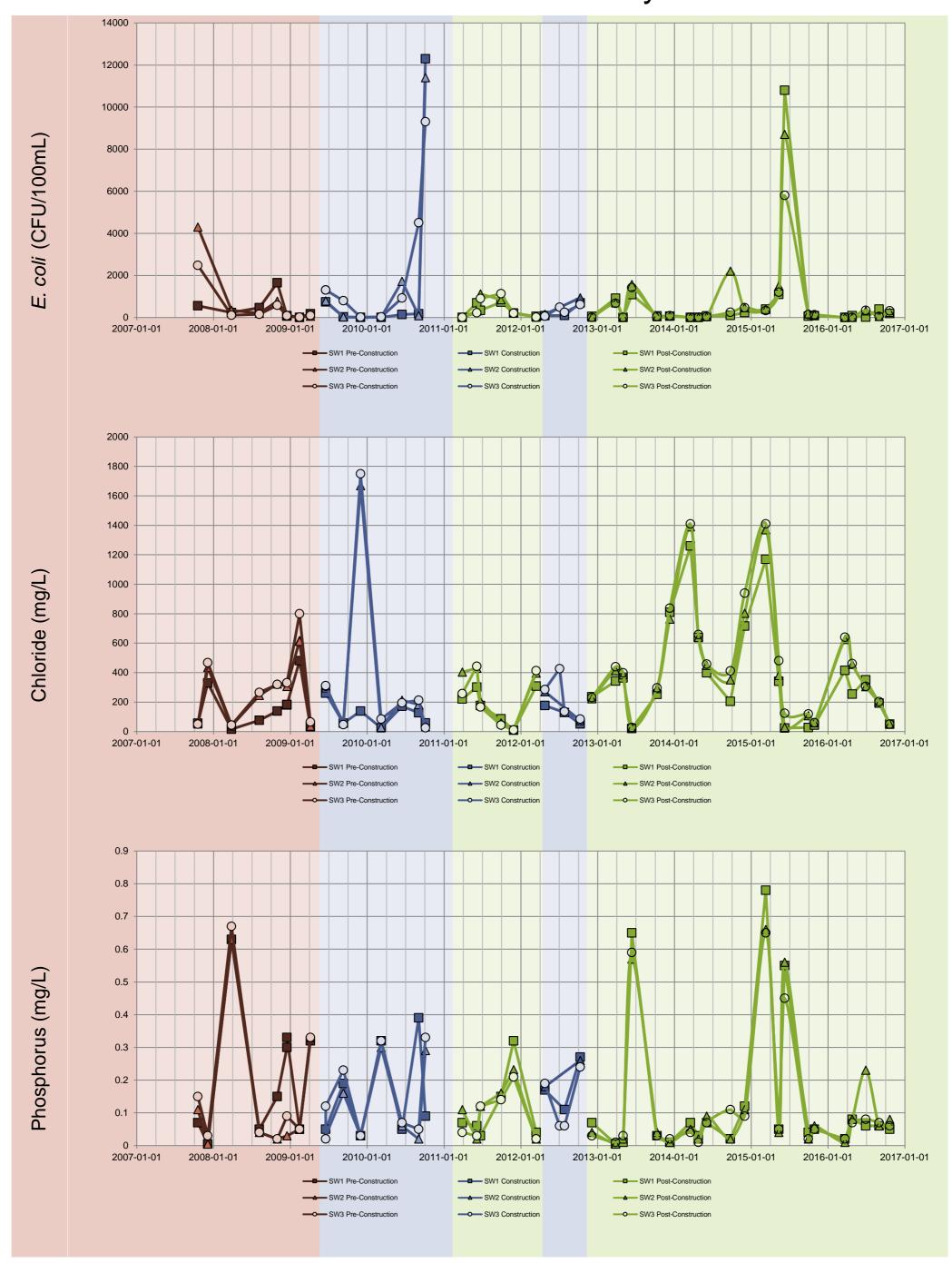

# Figure C-1 Surface Water Quality Cataract Road Tributary



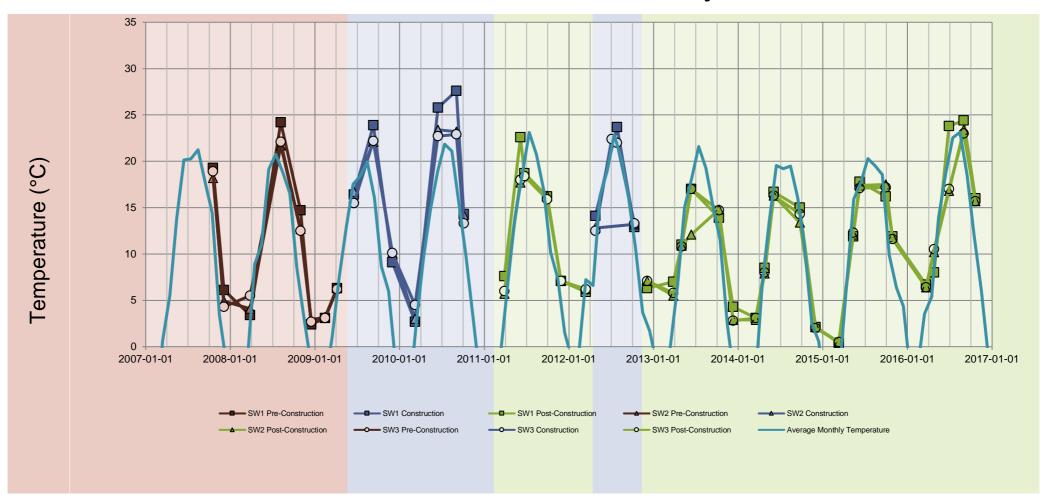




### Figure C-1 Surface Water Quality Cataract Road Tributary

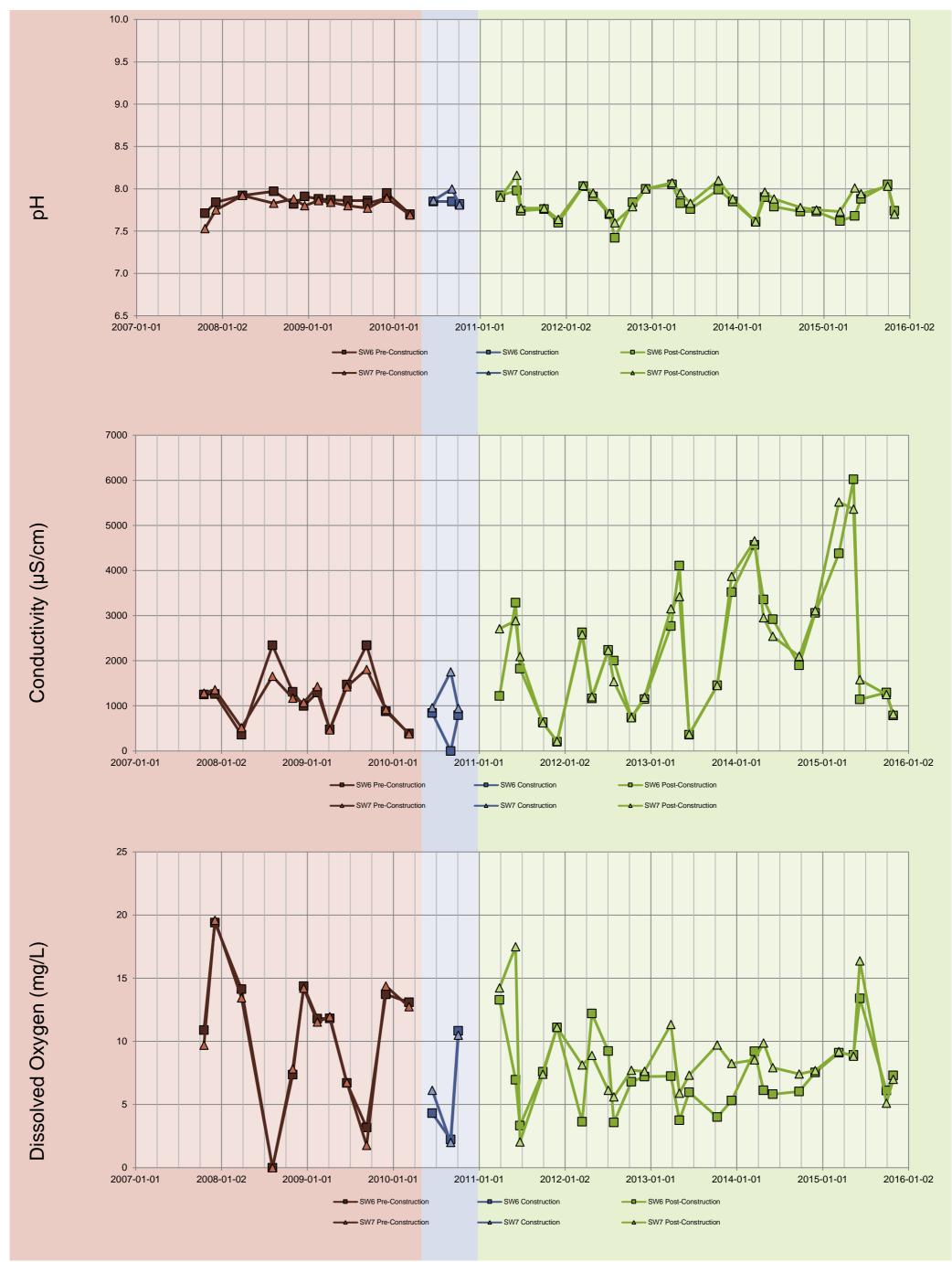




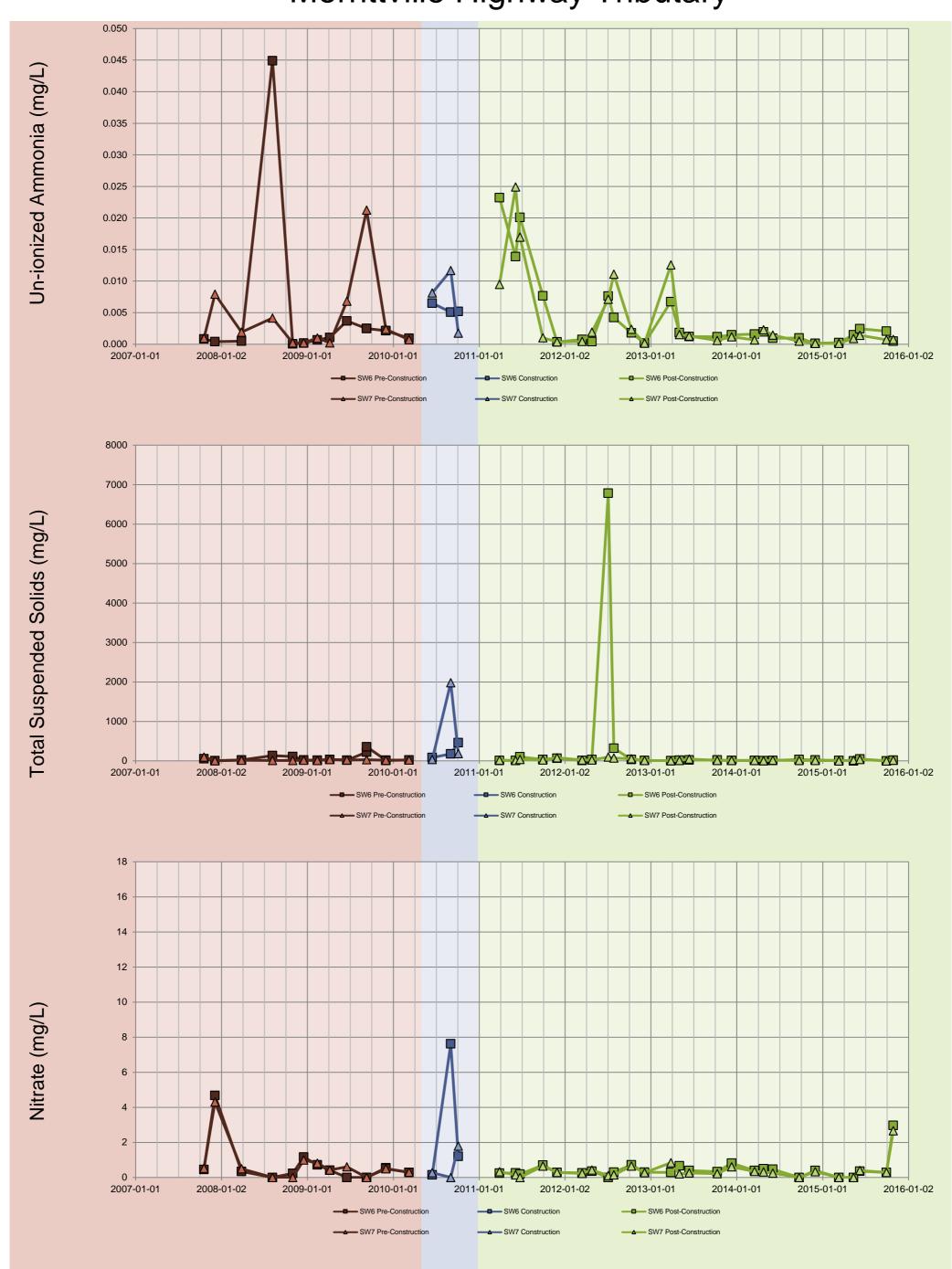


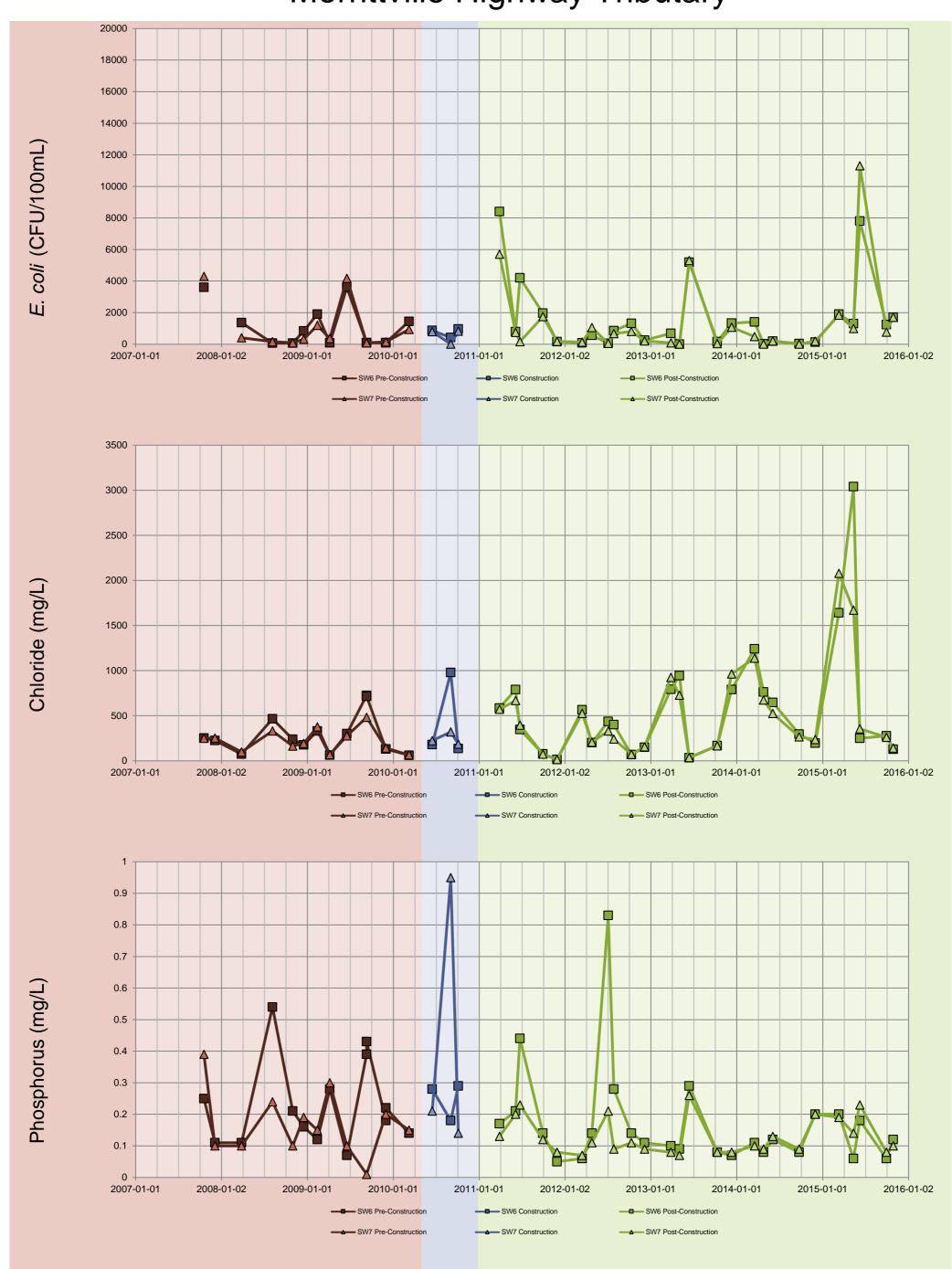


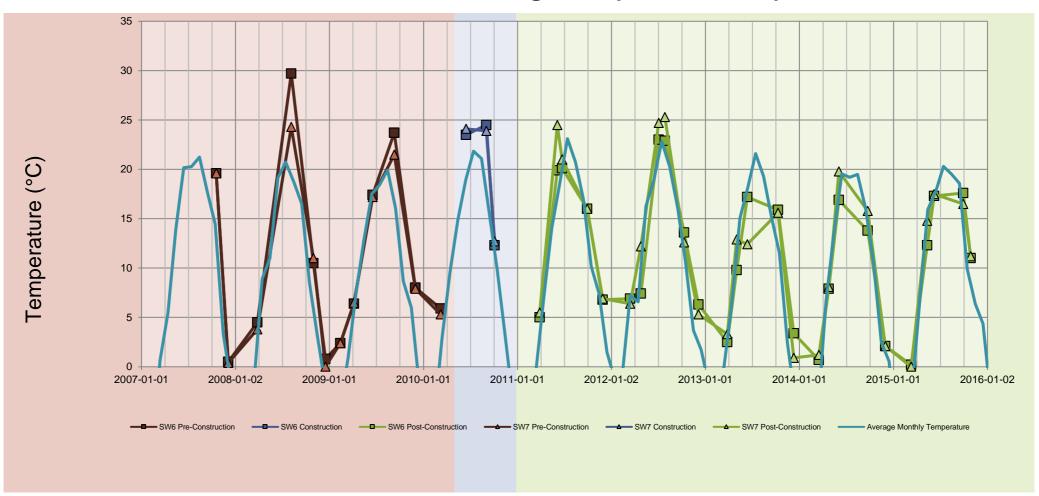



















CLIENT NAME: WSP CANADA INC.

55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5

(905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T079620

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

WATER ANALYSIS REVIEWED BY: Sofka Pehlyova, Senior Analyst

DATE REPORTED: Mar 31, 2016

PAGES (INCLUDING COVER): 7

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| * | <u>*NOTES</u> |  |  |
|---|---------------|--|--|
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |
|   |               |  |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 7



Certificate of Analysis

AGAT WORK ORDER: 16T079620

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:Fonthill - Regional Road 20

ATTENTION TO: Craig Leger SAMPLED BY:Steve Kellerman

|                           |           |            |           | Microb    | iological Ar | nalysis (wat | er)       |                           |
|---------------------------|-----------|------------|-----------|-----------|--------------|--------------|-----------|---------------------------|
| DATE RECEIVED: 2016-03-23 |           |            |           |           |              |              |           | DATE REPORTED: 2016-03-31 |
|                           | 5         | SAMPLE DES | CRIPTION: | SW1       | SW2          | SW3          | SW100     |                           |
|                           |           | SAM        | PLE TYPE: | Water     | Water        | Water        | Water     |                           |
|                           |           | DATE       | SAMPLED:  | 3/22/2016 | 3/22/2016    | 3/22/2016    | 3/22/2016 |                           |
| Parameter                 | Unit      | G/S        | RDL       | 7457566   | 7457567      | 7457572      | 7457582   |                           |
| Escherichia coli          | CFU/100mL |            | 2         | ND        | ND           | ND           | ND        |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7457566-7457582 RDL >1 indicates dilutions of the sample.

ND - Not Detected.

Certified By:





Certificate of Analysis

AGAT WORK ORDER: 16T079620

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:Fonthill - Regional Road 20

ATTENTION TO: Craig Leger SAMPLED BY:Steve Kellerman

| Inorganic Chemistry (Water) |                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |  |  |  |
|-----------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|
|                             |                                                        |                                                                                                                                                                                         |                                                                                                                                                                                                                           |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                     | DATE REPORTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | : 2016-03-31                                |  |  |  |
| S                           | AMPLE DESCRIPTION                                      | : SW1                                                                                                                                                                                   |                                                                                                                                                                                                                           | SW2                                                                                                                                                                                                                                      | SW3                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                     | SW100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |  |  |
|                             | SAMPLE TYPE                                            | : Water                                                                                                                                                                                 |                                                                                                                                                                                                                           | Water                                                                                                                                                                                                                                    | Water                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                     | Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |  |  |
|                             | DATE SAMPLED                                           | : 3/22/2016                                                                                                                                                                             |                                                                                                                                                                                                                           | 3/22/2016                                                                                                                                                                                                                                | 3/22/2016                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                     | 3/22/2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |  |  |  |
| Unit                        | G/S RDL                                                | 7457566                                                                                                                                                                                 | RDL                                                                                                                                                                                                                       | 7457567                                                                                                                                                                                                                                  | 7457572                                                                                                                                                                                                                                                                                                 | RDL                                                                                                                                                                                                                                                                                                                                                                                                 | 7457582                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |  |  |  |
| mg/L                        | 5                                                      | 6                                                                                                                                                                                       | 5                                                                                                                                                                                                                         | <5                                                                                                                                                                                                                                       | <5                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                             |  |  |  |
| pH Units                    | NA                                                     | 8.11                                                                                                                                                                                    | NA                                                                                                                                                                                                                        | 8.12                                                                                                                                                                                                                                     | 8.17                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                  | 8.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |  |  |  |
| mg/L                        | 10                                                     | 14                                                                                                                                                                                      | 10                                                                                                                                                                                                                        | <10                                                                                                                                                                                                                                      | <10                                                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |  |  |  |
| mg/L                        | 1.0                                                    | 415                                                                                                                                                                                     | 2.0                                                                                                                                                                                                                       | 625                                                                                                                                                                                                                                      | 640                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                                                                 | 409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |  |  |  |
| mg/L                        | 0.5                                                    | 1.2                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                       | 1.3                                                                                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |  |  |  |
| mg/L                        | 0.5                                                    | <0.5                                                                                                                                                                                    | 1.0                                                                                                                                                                                                                       | <1.0                                                                                                                                                                                                                                     | <1.0                                                                                                                                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                                                                                                                                                                                                 | <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |  |  |  |
| mg/L                        | 0.02                                                   | <0.02                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                      | <0.02                                                                                                                                                                                                                                    | <0.02                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                | <0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |  |  |  |
| mg/L                        | 0.01                                                   | 0.02                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |  |  |  |
| mg/L                        | 0.10                                                   | 0.79                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                      | 0.42                                                                                                                                                                                                                                     | 0.46                                                                                                                                                                                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             |  |  |  |
|                             | Unit  mg/L pH Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L | SAMPLE TYPE     DATE SAMPLED     DATE SAMPLED     G / S   RDL     Mg/L   5     PH Units   NA     mg/L   10     mg/L   1.0     mg/L   0.5     mg/L   0.5     mg/L   0.02     mg/L   0.01 | SAMPLE DESCRIPTION: SW1   SAMPLE TYPE: Water   DATE SAMPLED: 3/22/2016   Unit G/S RDL 7457566   mg/L 5 6   PH Units NA 8.11   mg/L 10 14   mg/L 1.0 415   mg/L 0.5 1.2   mg/L 0.5 <0.5   mg/L 0.02 <0.02   mg/L 0.01 0.02 | SAMPLE DESCRIPTION: SW1 SAMPLE TYPE: Water DATE SAMPLED: 3/22/2016 Unit G / S RDL 7457566 RDL  mg/L 5 6 5 pH Units NA 8.11 NA mg/L 10 14 10 mg/L 1.0 415 2.0 mg/L 0.5 1.2 1.0 mg/L 0.5 <0.5 1.0 mg/L 0.02 <0.02 0.02 mg/L 0.01 0.02 0.01 | SAMPLE DESCRIPTION:         SW1         SW2           SAMPLE TYPE:         Water         Water           DATE SAMPLED:         3/22/2016         3/22/2016           Unit         G / S         RDL         7457566         RDL         7457567           mg/L         5         6         5         <5 | SAMPLE DESCRIPTION:         SW1         SW2         SW3           SAMPLE TYPE:         Water         Water         Water         Water           DATE SAMPLED:         3/22/2016         3/22/2016         3/22/2016         3/22/2016           Unit         G / S         RDL         7457566         RDL         7457567         7457572           mg/L         5         6         5         <5 | SAMPLE DESCRIPTION: SW1   SW2   SW3     SAMPLE TYPE: Water   Water   Water   Water     DATE SAMPLED: 3/22/2016   3/22/2016   3/22/2016     Unit G / S RDL 7457566   RDL 7457567   7457572   RDL     mg/L 5 6 5 5 <5 5 5     pH Units NA 8.11 NA 8.12   8.17 NA     mg/L 10 14 10 <10 <10 10 10     mg/L 1.0 415   2.0 625 640   1.0     mg/L 0.5 1.2 1.0 1.3 1.3 0.5     mg/L 0.5 <0.5 1.0 <1.0 <1.0 <50     mg/L 0.02 <0.02 0.02 <0.02 <0.02     mg/L 0.01 0.02 0.01 0.01 0.02 0.01 | SAMPLE DESCRIPTION: SW1   SW2   SW3   SW100 |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7457566-7457582 Elevated RDLs for Anions indicate the degree of sample dilutions prior to analyses to keep analytes within the calibration range, reduce matrix interference and/or to avoid contaminating the instrument.

Certified By:

Sofia Pehlyora



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC. PROJECT: 111-53018-00

ATTENTION TO: Craig Leger SAMPLED BY:Steve Kellerman

AGAT WORK ORDER: 16T079620

SAMPLING SITE:Fonthill - Regional Road 20

| Microbiology Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |        |         |        |        |                 |                       |       |     |         |       |                |          |     |                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------|--------|--------|-----------------|-----------------------|-------|-----|---------|-------|----------------|----------|-----|----------------|
| RPT Date: Mar 31, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E     |        | REFEREN | ICE MA | TERIAL | METHOD          | BLANK                 | SPIKE | MAT | RIX SPI | KE    |                |          |     |                |
| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Batch | Sample | Dup #1  | Dup #2 | RPD    | Method<br>Blank | Blank Measured Limits |       |     |         | Lin   | ptable<br>nits | Recovery | Lin | ptable<br>nits |
| PARAMETER Batch   Dup #1   Dup #2   RPD   Dum   Recovery   Recovery   Lower   Upper   Upper |       |        |         |        |        |                 |                       |       |     |         | Upper |                |          |     |                |

Microbiological Analysis (water)

Escherichia coli 7457566 7457566 ND ND NA < 1

Comments: ND - Not Detected, NA - % RPD Not Applicable

Certified By:





#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC. PROJECT: 111-53018-00

SAMPLING SITE:Fonthill - Regional Road 20

AGAT WORK ORDER: 16T079620
ATTENTION TO: Craig Leger
SAMPLED BY:Steve Kellerman

|                             | Water Analysis |        |           |        |      |                 |          |        |                      |        |        |       |         |                |          |     |                |
|-----------------------------|----------------|--------|-----------|--------|------|-----------------|----------|--------|----------------------|--------|--------|-------|---------|----------------|----------|-----|----------------|
| RPT Date: Mar 31, 2016      |                |        | DUPLICATE |        |      |                 | REFEREN  | NCE MA | TERIAL               | METHOD | BLANK  | SPIKE | MAT     | RIX SPI        | KE       |     |                |
| PARAMETER                   | Batch          | Sample | Dup #1    | Dup #2 | RPD  | Method<br>Blank | Measured |        | Acceptable<br>Limits |        | Limito |       | 1 1 1 1 | ptable<br>nits | Recovery | Lin | ptable<br>nits |
|                             |                | ld     | ·         | ,      |      |                 | Value    | Lower  | Upper                |        | Lower  | Upper |         | Lower          | Upper    |     |                |
| Inorganic Chemistry (Water) |                |        |           |        |      |                 |          |        |                      |        |        |       |         |                |          |     |                |
| BOD (5)                     | 7456577        |        | 449       | 470    | 4.6% | < 5             | 103%     | 75%    | 125%                 | NA     |        |       | NA      |                |          |     |                |
| pH                          | 7458510        |        | 8.05      | 8.11   | 0.7% | NA              | 99%      | 90%    | 110%                 | NA     |        |       | NA      |                |          |     |                |
| Total Suspended Solids      | 7457577 7      | 457577 | 90        | 95     | 5.4% | < 10            | 102%     | 80%    | 120%                 | NA     |        |       | NA      |                |          |     |                |
| Chloride                    | 7457487        |        | 71.0      | 67.0   | 5.8% | < 0.10          | 97%      | 90%    | 110%                 | 101%   | 90%    | 110%  | 96%     | 80%            | 120%     |     |                |
| Nitrate as N                | 7457487        |        | <0.25     | <0.25  | NA   | < 0.05          | 102%     | 90%    | 110%                 | 107%   | 90%    | 110%  | 108%    | 80%            | 120%     |     |                |
| Nitrite as N                | 7457487        |        | <0.25     | <0.25  | NA   | < 0.05          | NA       | 90%    | 110%                 | 95%    | 90%    | 110%  | 93%     | 80%            | 120%     |     |                |
| Ammonia as N                | 7457572 7      | 457572 | <0.02     | < 0.02 | NA   | < 0.02          | 90%      | 90%    | 110%                 | 97%    | 90%    | 110%  | 94%     | 80%            | 120%     |     |                |
| Total Phosphorus            | 7460336        |        | 0.17      | 0.16   | 6.1% | < 0.01          | 106%     | 90%    | 110%                 | 102%   | 90%    | 110%  | 104%    | 70%            | 130%     |     |                |
| Total Kjeldahl Nitrogen     | 7455677        |        | 0.64      | 0.67   | 4.6% | < 0.10          | 102%     | 80%    | 120%                 | 100%   | 80%    | 120%  | 95%     | 70%            | 130%     |     |                |

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Certified By:

Sofra Pehlyna



#### **Method Summary**

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-53018-00

ATTENTION TO: Craig Leger

SAMPLING SITE:Fonthill - Regional Road 20

SAMPLED BY:Steve Kellerman

| PARAMETER               | AGAT S.O.P   | LITERATURE REFERENCE                       | ANALYTICAL TECHNIQUE |
|-------------------------|--------------|--------------------------------------------|----------------------|
| Microbiology Analysis   | •            |                                            |                      |
| Escherichia coli        | MIC-93-7010  | EPA 1604                                   | Membrane Filtration  |
| Water Analysis          |              |                                            |                      |
| BOD (5)                 | INOR-93-6006 | SM 5210 B                                  | DO METER             |
| рН                      | INOR-93-6000 | SM 4500-H+ B                               | PC TITRATE           |
| Total Suspended Solids  | INOR-93-6028 | SM 2540 D                                  | BALANCE              |
| Chloride                | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Nitrate as N            | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Nitrite as N            | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Ammonia as N            | INOR-93-6059 | QuikChem 10-107-06-1-J & SM 4500<br>NH3-F  | LACHAT FIA           |
| Total Phosphorus        | INOR-93-6022 | SM 4500-P B&E                              | SPECTROPHOTOMETER    |
| Total Kjeldahl Nitrogen | INOR-93-6048 | QuikChem 10-107-06-2-I & SM<br>4500-Nora D | LACHAT FIA           |

| Samples Relinguished By (Print Nazine and Sign):  Show Many Date 11 Time  22 May 1/6 | 50/00 | 506   |       | Sample Identification  Date Time # of Sample Sampled Sampled Containers Matrix | AGAT Quote #:  Please note: If quotation number is not provided, client will be billed full price for analysis.  Invoice Information:  Bill To Same: Yes No []  Company: Contact: Address: Email: | Project Information.  Project:  Project:  Site Location:  Sampled By:  Sampled By:                             | Contact:  Address:  Phone: Reports to be sent to:  1. Email:  Cray, legar a Vs gracip. Com.  2. Email:                                                                                                                                                                                                                           | Chain of Custody Record If this is a Drinking Water sample, please under the Report Information:                                                                                         | Laboratories                                                                                                                    |
|--------------------------------------------------------------------------------------|-------|-------|-------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Schriples Received By (Print Name and Sign):                                         |       |       |       | Metal Hydric Client ORPs Cr <sup>5+</sup> Tota Nutrie No <sub>3</sub> Volati   | Custom Metals  Custom Metals  B-HWS   C  CN Check IN   Hg   DH   SAR INC   TP   NH3   TKN NO2   NO3/NO2  Les:   VOC   BTEX   THM                                                                  | Is this submission for a  Record of Site Condition?  ☐ Yes                                                     | □ Regulation 153/04       □ Sewer Use       □ Regulation 558         □ Ind/Com       □ Sanitary       □ CCME         □ Ind/Com       □ Storm       □ Storm         □ Agriculture       □ Storm       ○ Dijectives (PWQO)         Soil Texture (Check One)       Region Indicate One       □ Other         □ Coarse       □ Other | If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water intended for human consumption)  Regulatory Requirements:   No Regulatory Requirement | Mi - Bi 245 Contenue 5835 Coopers Avenue Mississauga, Onterio L4Z 1y2  Ph: 905.712.5100 Fax: 905,712.5122 webearth.agattabs.com |
| TENYOUS TIME L OF L                                                                  | ×     | . × × | 2 × 2 | ABNS PAHS Chloro PCBS Organ TCLP                                               | pphenois  ochlorine Pesticides  Wetals/Inorganics  Use                                                                                                                                            | ysis  Please provide prior notification for rush TAT  NO  *TAT is exclusive of weekends and statutory holidays | Turnal Regula (20)                                                                                                                                                                                                                                                                                                               | irement Custody Seal Intact: ☐Yes ☐No ☐N/A                                                                                                                                               | Laboratory Use Only L4Z 1Y2 Work Order #:                                                                                       |

OTOTTEST MANAGEMENT

Date Date Time

Samples Received By (Print Name and Sign):

Pink Copy - Client I Yellow Copy - AGAT I White Copy - AGAT

021428



CLIENT NAME: WSP CANADA INC.

55 KING STREET, 7TH FLOOR ST CATHARINES, ON L2R3H5

(905) 687-1771

ATTENTION TO: Craig Leger

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T089209

MICROBIOLOGY ANALYSIS REVIEWED BY: Elizabeth Polakowska, MSc (Animal Sci), PhD (Agri Sci), Inorganic Lab

Supervisor

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: May 06, 2016

PAGES (INCLUDING COVER): 7

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NO | <u>TES</u> |  |  |
|-----|------------|--|--|
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |
|     |            |  |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

AGAT Laboratories (V1)

Page 1 of 7



#### Certificate of Analysis

AGAT WORK ORDER: 16T089209

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:RR 20

ATTENTION TO: Craig Leger SAMPLED BY:Sean Morris

| o, = o= = o               |                                  |           |           |           |           |           |           |                           |  |  |  |  |
|---------------------------|----------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|---------------------------|--|--|--|--|
|                           | Microbiological Analysis (water) |           |           |           |           |           |           |                           |  |  |  |  |
| DATE RECEIVED: 2016-04-27 |                                  |           |           |           |           |           |           | DATE REPORTED: 2016-05-06 |  |  |  |  |
|                           | SA                               | AMPLE DES | CRIPTION: | SW1       | SW100     | SW2       | SW3       |                           |  |  |  |  |
|                           |                                  | SAM       | PLE TYPE: | Water     | Water     | Water     | Water     |                           |  |  |  |  |
|                           |                                  | DATE      | SAMPLED:  | 4/26/2016 | 4/26/2016 | 4/26/2016 | 4/26/2016 |                           |  |  |  |  |
| Parameter                 | Unit                             | G/S       | RDL       | 7516297   | 7516298   | 7516304   | 7516310   |                           |  |  |  |  |
| Escherichia coli          | CFU/100mL                        |           | 2         | 90        | 100       | 8         | 8         |                           |  |  |  |  |
|                           |                                  |           |           |           |           |           |           |                           |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7516297-7516310 RDL >1 indicates dilutions of the sample.

Certified By:

Elizabeth Rolokowska



Certificate of Analysis

AGAT WORK ORDER: 16T089209

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:RR 20

ATTENTION TO: Craig Leger SAMPLED BY:Sean Morris

| Fonthill Sites - SW Parameters |                                                    |            |           |           |           |      |           |      |           |  |  |  |  |  |
|--------------------------------|----------------------------------------------------|------------|-----------|-----------|-----------|------|-----------|------|-----------|--|--|--|--|--|
| DATE RECEIVED: 2016-04-27      | ATE RECEIVED: 2016-04-27 DATE REPORTED: 2016-05-06 |            |           |           |           |      |           |      |           |  |  |  |  |  |
|                                | S                                                  | SAMPLE DES | CRIPTION: | SW1       | SW100     |      | SW2       |      | SW3       |  |  |  |  |  |
|                                |                                                    | SAMI       | PLE TYPE: | Water     | Water     |      | Water     |      | Water     |  |  |  |  |  |
|                                |                                                    | DATES      | SAMPLED:  | 4/26/2016 | 4/26/2016 |      | 4/26/2016 |      | 4/26/2016 |  |  |  |  |  |
| Parameter                      | Unit                                               | G/S        | RDL       | 7516297   | 7516298   | RDL  | 7516304   | RDL  | 7516310   |  |  |  |  |  |
| BOD (5)                        | mg/L                                               |            | 5         | <5        | <5        | 5    | 5         | 5    | <5        |  |  |  |  |  |
| рН                             | pH Units                                           |            | NA        | 7.99      | 8.05      | NA   | 7.97      | NA   | 7.99      |  |  |  |  |  |
| Total Suspended Solids         | mg/L                                               |            | 10        | 60        | 24        | 10   | 92        | 10   | 61        |  |  |  |  |  |
| Chloride                       | mg/L                                               |            | 0.50      | 253       | 248       | 0.10 | 456       | 1.0  | 461       |  |  |  |  |  |
| Nitrate as N                   | mg/L                                               |            | 0.25      | 0.59      | 0.58      | 0.25 | 1.17      | 0.5  | 1.2       |  |  |  |  |  |
| Nitrite as N                   | mg/L                                               |            | 0.25      | <0.25     | <0.25     | 0.25 | <0.25     | 0.5  | <0.5      |  |  |  |  |  |
| Ammonia as N                   | mg/L                                               |            | 0.02      | 0.11      | 0.10      | 0.02 | 0.03      | 0.02 | 0.03      |  |  |  |  |  |
| Total Phosphorus               | mg/L                                               |            | 0.01      | 0.08      | 0.09      | 0.01 | 0.08      | 0.01 | 0.07      |  |  |  |  |  |
| Total Kjeldahl Nitrogen        | mg/L                                               |            | 0.10      | 0.59      | 0.64      | 0.10 | 0.48      | 0.10 | 0.50      |  |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7516297-7516310 The RDL's were increased for Anions to reflect a dilution of the sample in order to keep the analytes within a valid calibration range of the instruments.

CHARTERED BY CHEMIST



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-53018-00 SAMPLING SITE:RR 20 AGAT WORK ORDER: 16T089209 ATTENTION TO: Craig Leger SAMPLED BY:Sean Morris

| Microbiology Analysis            |       |        |        |        |     |                                               |                 |              |          |       |                |          |         |                |
|----------------------------------|-------|--------|--------|--------|-----|-----------------------------------------------|-----------------|--------------|----------|-------|----------------|----------|---------|----------------|
| RPT Date: May 06, 2016 DUPLICATE |       |        |        |        |     |                                               | REFEREN         | ICE MATERIAL | METHOD   | BLANK | SPIKE          | MAT      | RIX SPI | KE             |
| PARAMETER                        | Batch | Sample | Dup #1 | Dup #2 | RPD | Method<br>Blank                               | Measured Limits |              | Recovery | Lim   | otable<br>nits | Recovery |         | ptable<br>nits |
|                                  |       | Iu     |        | ·      |     | Value Lower Upper Lower Upper Lower Upper Low |                 |              |          |       |                |          |         | Upper          |

NA

< 1

ND

Microbiological Analysis (water)

Escherichia coli 7515297 ND

Comments: ND - Not Detected, NA - % RPD Not Applicable

Certified By:

Elizabeth Rolakowska



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-53018-00 SAMPLING SITE:RR 20 AGAT WORK ORDER: 16T089209
ATTENTION TO: Craig Leger
SAMPLED BY:Sean Morris

| O/ IIII EII O OII E.I II C     |         | Of tivil EED B1. Court Morris |         |        |         |                 |                   |        |                      |       |       |                |          |       |                 |
|--------------------------------|---------|-------------------------------|---------|--------|---------|-----------------|-------------------|--------|----------------------|-------|-------|----------------|----------|-------|-----------------|
|                                |         |                               |         | Wate   | er Ar   | nalys           | is                |        |                      |       |       |                |          |       |                 |
| RPT Date: May 06, 2016         |         |                               | UPLICAT |        | REFEREN | NCE MA          | TERIAL            | METHOD | BLAN                 | SPIKE | MAT   | RIX SPI        | KE       |       |                 |
| PARAMETER                      | Batch   | Sample                        | Dup #1  | Dup #2 | RPD     | Method<br>Blank | Measured<br>Value |        | Acceptable<br>Limits |       |       | ptable<br>nits | Recovery | Lin   | eptable<br>mits |
|                                |         | Id                            |         | ·      |         |                 | value             | Lower  | Upper                |       | Lower | Upper          | ·        | Lower | Upper           |
| Fonthill Sites - SW Parameters |         |                               |         |        |         |                 |                   |        |                      |       |       |                |          |       |                 |
| BOD (5)                        | 7516297 | 7516297                       | <5      | <5     | NA      | < 5             | 101%              | 75%    | 125%                 | NA    |       |                | NA       |       |                 |
| pH                             | 7521618 |                               | 6.80    | 6.84   | 0.6%    | NA              | 100%              | 90%    | 110%                 | NA    |       |                | NA       |       |                 |
| Total Suspended Solids         | 7516252 |                               | 69      | 63     | 9.1%    | < 10            | 98%               | 80%    | 120%                 | NA    |       |                | NA       |       |                 |
| Chloride                       | 7517713 |                               | 11.3    | 11.4   | 0.9%    | < 0.10          | 96%               | 90%    | 110%                 | 107%  | 90%   | 110%           | 103%     | 80%   | 120%            |
| Nitrate as N                   | 7517713 |                               | <0.25   | <0.25  | NA      | < 0.05          | 98%               | 90%    | 110%                 | 108%  | 90%   | 110%           | 109%     | 80%   | 120%            |
| Nitrite as N                   | 7517713 |                               | <0.25   | <0.25  | NA      | < 0.05          | NA                | 90%    | 110%                 | 104%  | 90%   | 110%           | 104%     | 80%   | 120%            |
| Ammonia as N                   | 7526005 |                               | 12.0    | 12.2   | 1.7%    | < 0.02          | 90%               | 90%    | 110%                 | 101%  | 90%   | 110%           | 90%      | 80%   | 120%            |
| Total Phosphorus               | 7516297 | 7516297                       | 0.08    | 0.08   | 0.0%    | < 0.01          | 95%               | 90%    | 110%                 | 92%   | 90%   | 110%           | 101%     | 70%   | 130%            |
| Total Kjeldahl Nitrogen        | 7516297 | 7516297                       | 0.59    | 0.64   | 8.1%    | < 0.10          | 102%              | 80%    | 120%                 | 101%  | 80%   | 120%           | 97%      | 70%   | 130%            |

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL (Reporting Limit), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.



Certified By:



#### **Method Summary**

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T089209

ATTENTION TO: Craig Leger

SAMPLING SITE:RR 20

SAMPLED BY:Sean Morris

| DADAMETED               | 101T00D      | LITEDATURE REFERENCE                    | ANALYTICAL TECHNIQUE |  |  |  |
|-------------------------|--------------|-----------------------------------------|----------------------|--|--|--|
| PARAMETER               | AGAT S.O.P   | LITERATURE REFERENCE                    | ANALYTICAL TECHNIQUE |  |  |  |
| Microbiology Analysis   |              |                                         |                      |  |  |  |
| Escherichia coli        | MIC-93-7010  | EPA 1604                                | Membrane Filtration  |  |  |  |
| Water Analysis          |              |                                         |                      |  |  |  |
| BOD (5)                 | INOR-93-6006 | SM 5210 B                               | DO METER             |  |  |  |
| pH                      | INOR-93-6000 | SM 4500-H+ B                            | PC TITRATE           |  |  |  |
| Total Suspended Solids  | INOR-93-6028 | SM 2540 D                               | BALANCE              |  |  |  |
| Chloride                | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |  |  |  |
| Nitrate as N            | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |  |  |  |
| Nitrite as N            | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |  |  |  |
| Ammonia as N            | INOR-93-6059 | QuikChem 10-107-06-1-J & SM 4500 NH3-F  | LACHAT FIA           |  |  |  |
| Total Phosphorus        | INOR-93-6022 | SM 4500-P B&E                           | SPECTROPHOTOMETER    |  |  |  |
| Total Kjeldahl Nitrogen | INOR-93-6048 | QuikChem 10-107-06-2-I & SM 4500-Norg D | LACHAT FIA           |  |  |  |

□N/A



CLIENT NAME: WSP CANADA INC.

4 Hughson Street South, Suite 300

Hamilton, ON L8N3Z1

(905) 529-4414

ATTENTION TO: Bailey Walters

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T111241

MICROBIOLOGY ANALYSIS REVIEWED BY: Scott Ross, Operations Manager

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: Jul 13, 2016

PAGES (INCLUDING COVER): 8

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |  |  |  |
|--------|--|--|--|
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |
|        |  |  |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

Page 1 of 8

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



#### Certificate of Analysis

AGAT WORK ORDER: 16T111241

PROJECT: 111-53018-00

ATTENTION TO: Bailey Walters

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

| N 1: I-: - | ا ماند ا ا  | 1           | / <i> t</i> \ |
|------------|-------------|-------------|---------------|
| MICTORIO   | indical Ana | 11/616      | MATEL         |
|            | logical Ana | 1 4 3 1 3 1 | i watti       |

|                           |           | Microbiological Analysis (water) |           |           |           |           |           |                           |  |  |  |  |  |
|---------------------------|-----------|----------------------------------|-----------|-----------|-----------|-----------|-----------|---------------------------|--|--|--|--|--|
| DATE RECEIVED: 2016-06-30 | )         |                                  |           |           |           |           |           | DATE REPORTED: 2016-07-13 |  |  |  |  |  |
|                           | SA        | AMPLE DES                        | CRIPTION: | SW1       | SW2       | SW100     | SW3       |                           |  |  |  |  |  |
|                           |           | SAM                              | PLE TYPE: | Water     | Water     | Water     | Water     |                           |  |  |  |  |  |
|                           |           | DATE                             | SAMPLED:  | 6/29/2016 | 6/29/2016 | 6/29/2016 | 6/29/2016 |                           |  |  |  |  |  |
| Parameter                 | Unit      | G/S                              | RDL       | 7676589   | 7676595   | 7676600   | 7676605   |                           |  |  |  |  |  |
| Escherichia coli          | CFU/100mL |                                  | 2         | 16        | 316       | 52        | 340       |                           |  |  |  |  |  |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

7676589-7676605 RDL >1 indicates dilutions of the sample.

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:





CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 16T111241

PROJECT: 111-53018-00

ATTENTION TO: Bailey Walters

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

#### Inorganic Chemistry (Water)

|                           |          |             |           |           | ,         |           | ,         |                           |
|---------------------------|----------|-------------|-----------|-----------|-----------|-----------|-----------|---------------------------|
| DATE RECEIVED: 2016-06-30 |          |             |           |           |           |           |           | DATE REPORTED: 2016-07-13 |
|                           | 5        | SAMPLE DESC | CRIPTION: | SW1       | SW2       | SW100     | SW3       |                           |
|                           |          | SAMF        | PLE TYPE: | Water     | Water     | Water     | Water     |                           |
|                           |          | DATE S      | SAMPLED:  | 6/29/2016 | 6/29/2016 | 6/29/2016 | 6/29/2016 |                           |
| Parameter                 | Unit     | G/S         | RDL       | 7676589   | 7676595   | 7676600   | 7676605   |                           |
| BOD (5)                   | mg/L     |             | 5         | <5        | <5        | <5        | <5        |                           |
| pH                        | pH Units | 6.5-8.5     | NA        | 7.74      | 8.04      | 7.81      | 8.09      |                           |
| Total Suspended Solids    | mg/L     |             | 10        | 36        | 506       | 32        | 92        |                           |
| Chloride                  | mg/L     |             | 0.50      | 351       | 305       | 354       | 307       |                           |
| Nitrate as N              | mg/L     |             | 0.25      | <0.25     | <0.25     | <0.25     | <0.25     |                           |
| Nitrite as N              | mg/L     |             | 0.25      | <0.25     | <0.25     | <0.25     | <0.25     |                           |
| Total Phosphorus          | mg/L     | 0.03        | 0.01      | 0.06      | 0.23      | 0.06      | 0.08      |                           |
| Total Kjeldahl Nitrogen   | mg/L     |             | 0.10      | 0.59      | 0.84      | 0.53      | 0.42      |                           |
| Ammonia as N              | mg/L     |             | 0.02      | 0.13      | 0.19      | 0.14      | 0.08      |                           |
|                           |          |             |           |           |           |           |           |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO (mg/L)

7676589-7676605 Samples required dilution prior to analysis for Anions in order to keep the analytes within the calibration range of the instruments and to minimize any matrix interferences; the RDLs were adjusted to reflect the dilution.

CHARTERED BY PAYOR VANDER OF THE PAYOR VANDER



#### **Guideline Violation**

AGAT WORK ORDER: 16T111241

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Bailey Walters

| SAMPLEID | SAMPLE TITLE | GUIDELINE   | ANALYSIS PACKAGE            | PARAMETER        | GUIDEVALUE | RESULT |
|----------|--------------|-------------|-----------------------------|------------------|------------|--------|
| 7676589  | SW1          | PWQO (mg/L) | Inorganic Chemistry (Water) | Total Phosphorus | 0.03       | 0.06   |
| 7676595  | SW2          | PWQO (mg/L) | Inorganic Chemistry (Water) | Total Phosphorus | 0.03       | 0.23   |
| 7676600  | SW100        | PWQO (mg/L) | Inorganic Chemistry (Water) | Total Phosphorus | 0.03       | 0.06   |
| 7676605  | SW3          | PWQO (mg/L) | Inorganic Chemistry (Water) | Total Phosphorus | 0.03       | 80.0   |



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 16T111241
ATTENTION TO: Bailey Walters

PROJECT: 111-53018-00 SAMPLING SITE:

SAMPLED BY:

|                        |       |        | Mic    | robi    | ology | / Ana           | lysis    | }                    |          |       |                |          |              |       |
|------------------------|-------|--------|--------|---------|-------|-----------------|----------|----------------------|----------|-------|----------------|----------|--------------|-------|
| RPT Date: Jul 13, 2016 |       |        | D      | UPLICAT | E     |                 | REFEREN  | ICE MATERIAL         | METHOD   | BLANK | SPIKE          | MAT      | RIX SPIK     | (E    |
| PARAMETER              | Batch | Sample | Dup #1 | Dup #2  | RPD   | Method<br>Blank | Measured | Acceptable<br>Limits | Recovery | Lim   | ptable<br>nits | Recovery | Accep<br>Lim |       |
|                        |       | Iū     | ·      | ·       |       |                 | Value    | Lower Upper          |          | Lower | Upper          |          | Lower        | Upper |

NA

< 1

Microbiological Analysis (water)

Escherichia coli 7675333 2 2

Comments: NA - % RPD Not Reportable based on the number of colonies count acceptable for RPD calculation





#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 16T111241
ATTENTION TO: Bailey Walters

PROJECT: 111-53018-00 SAMPLING SITE:

SAMPLED BY:

| o: 2 o o 2                  |         |         |        |          |       |                 | `                 |        |                | • •      |         |                |          |         |                 |
|-----------------------------|---------|---------|--------|----------|-------|-----------------|-------------------|--------|----------------|----------|---------|----------------|----------|---------|-----------------|
|                             |         |         |        | Wate     | er An | alys            | is                |        |                |          |         |                |          |         |                 |
| RPT Date: Jul 13, 2016      |         |         |        | UPLICATI | E     |                 | REFEREN           | NCE MA | TERIAL         | METHOD   | BLAN    | SPIKE          | MAT      | RIX SPI | KE              |
| PARAMETER                   | Batch   | Sample  | Dup #1 | Dup #2   | RPD   | Method<br>Blank | Measured<br>Value |        | ptable<br>mits | Recovery | 1 1 1 1 | ptable<br>nits | Recovery | 1 1:00  | eptable<br>mits |
|                             |         | Id      |        | ·        |       |                 | value             | Lower  | Upper          |          | Lower   | Upper          |          | Lower   | Upper           |
| Inorganic Chemistry (Water) |         |         |        |          |       |                 |                   |        |                |          |         |                |          |         |                 |
| BOD (5)                     | 7675750 |         | 582    | 576      | 1.0%  | < 5             | 101%              | 75%    | 125%           | NA       |         |                | NA       |         |                 |
| pH                          | 7676605 | 7676605 | 8.09   | 8.07     | 0.2%  | NA              | 100%              | 90%    | 110%           | NA       |         |                | NA       |         |                 |
| Total Suspended Solids      | 7677778 |         | <10    | <10      | NA    | < 10            | 94%               | 80%    | 120%           | NA       |         |                | NA       |         |                 |
| Chloride                    | 7676761 |         | 3.32   | 3.13     | 5.9%  | < 0.10          | 91%               | 90%    | 110%           | 101%     | 90%     | 110%           | 108%     | 80%     | 120%            |
| Nitrate as N                | 7676761 |         | 0.33   | 0.28     | 16.4% | < 0.05          | 102%              | 90%    | 110%           | 108%     | 90%     | 110%           | 116%     | 80%     | 120%            |
| Nitrite as N                | 7676761 |         | <0.25  | <0.25    | NA    | < 0.05          | NA                | 90%    | 110%           | 96%      | 90%     | 110%           | 96%      | 80%     | 120%            |
| Total Phosphorus            | 7676589 | 7676589 | 0.06   | 0.06     | 0.0%  | < 0.01          | 95%               | 90%    | 110%           | 102%     | 90%     | 110%           | 97%      | 70%     | 130%            |
| Total Kjeldahl Nitrogen     | 7676595 | 7676595 | 0.84   | 0.89     | 5.8%  | < 0.10          | 101%              | 80%    | 120%           | 103%     | 80%     | 120%           | 99%      | 70%     | 130%            |
| Ammonia as N                | 7673421 |         | <0.02  | <0.02    | NA    | < 0.02          | 103%              | 90%    | 110%           | 99%      | 90%     | 110%           | 97%      | 80%     | 120%            |

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL (Reporting Limit), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.





## **Method Summary**

CLIENT NAME: WSP CANADA INC. AGAT WORK ORDER: 16T111241 PROJECT: 111-53018-00 ATTENTION TO: Bailey Walters

| SAMPLING SITE:          |              | SAMPLED BY:                                |                      |
|-------------------------|--------------|--------------------------------------------|----------------------|
| PARAMETER               | AGAT S.O.P   | LITERATURE REFERENCE                       | ANALYTICAL TECHNIQUE |
| Microbiology Analysis   |              |                                            |                      |
| Escherichia coli        | MIC-93-7010  | EPA 1604                                   | Membrane Filtration  |
| Water Analysis          |              |                                            |                      |
| BOD (5)                 | INOR-93-6006 | SM 5210 B                                  | DO METER             |
| pH                      | INOR-93-6000 | SM 4500-H+ B                               | PC TITRATE           |
| Total Suspended Solids  | INOR-93-6028 | SM 2540 D                                  | BALANCE              |
| Chloride                | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Nitrate as N            | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Nitrite as N            | INOR-93-6004 | SM 4110 B                                  | ION CHROMATOGRAPH    |
| Total Phosphorus        | INOR-93-6022 | SM 4500-P B&E                              | SPECTROPHOTOMETER    |
| Total Kjeldahl Nitrogen | INOR-93-6048 | QuikChem 10-107-06-2-I & SM<br>4500-Norg D | LACHAT FIA           |
| Ammonia as N            | INOR-93-6059 | QuikChem 10-107-06-1-J & SM 4500<br>NH3-F  | LACHAT FIA           |

Ph: 905 712.5100 Fax: 905.712 5122 webearth agatlabs.com Mississauga. Ontario L4Z 1Y2 5835 Coopers Avenue

Work Order #:

9

**Laboratory Use Only** 

| Samples Relinquished By (Pfint Name and Sign): | Burgated Restinguished By (Prins Number and St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Samples Relinquished By (Print Name and Sign):  BREWDAN CHILTY |    |  |  |  | Sw 3 | SW 100 | SW2 | Sw)          | Sample Identification                                                                  | Email:                                                  | Address:                         | Contact:                                        | Invoice Information:   | Pleas                             | Site Location:                                       | _                        | <b>Project Information:</b>                          | 2. Email:             |                          | Phone: 905 -                     | LSIN                 | 1. 1                            | Company:                           | Report Information.       | Chain of Custody Record                                                                            |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----|--|--|--|------|--------|-----|--------------|----------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------|-------------------------------------------------|------------------------|-----------------------------------|------------------------------------------------------|--------------------------|------------------------------------------------------|-----------------------|--------------------------|----------------------------------|----------------------|---------------------------------|------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|
| Sign):                                         | Significant of the state of the | Signi Freeden Cit                                              |    |  |  |  | <    |        |     | 25/06/2016 1 | Date<br>Sampled                                                                        |                                                         |                                  |                                                 |                        | ion number is not provi           | signed Kd. 20                                        | - 8105 5                 |                                                      | rough least for uspay |                          | 529-4414                         | 371                  | 300,                            | 0                                  | ) <del>"</del>            |                                                                                                    |
| Date                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 25/06/                                                       |    |  |  |  | 5    | 2      | 5   | 10:00        | Time # of Sampled Containers                                                           |                                                         |                                  |                                                 | Bill To Same:          | ded, client will be billed full p |                                                      |                          |                                                      | cap.com               | spgrap, c                | Fax:                             |                      | S                               |                                    |                           | this is a Drinking V                                                                               |
| īī (                                           | S/20/20 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15   3102/4                                                    |    |  |  |  | SW   | Sw     | 38  | Sw           | sample Matrix                                                                          |                                                         |                                  |                                                 | e: Yes ☑ No 🏻          | rice for analysis.                |                                                      |                          |                                                      |                       | Š                        |                                  |                      | Hemilton, on                    |                                    |                           | Vater sample, pleas                                                                                |
| Samples Received By (Print Name and Sign):     | Samples Received By (Print Name and Sign):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 Samplies Recoiveragy (P                                     | >  |  |  |  |      |        |     |              | Comments/<br>Special Instructions                                                      | SD Sediment SW Surface Water                            | S Soll                           | <b>P</b> Oil                                    | >                      | Legend                            | □ Yes □                                              | Record of Site Condition | Is this submission for a                             | □Fine                 | Soil Texture (Check One) | □ Res/ Park □ Agriculture        | Ind/Com              | Г                               | (Please check all applicable boxes | Regulatory Requirements:  | It this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water |
| int Name and Sign):                            | int Name and Sign):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | By (Printy Name and Sign):                                     | )_ |  |  |  | ک    | ک      | ۷   | 2            | Y/2                                                                                    | -                                                       | (Plea                            | se C                                            |                        | , CrVI                            | NO NO                                                | ndition?                 | n for a                                              |                       | Region Indicate One      | Storm                            | Sanitary             | Sewer Use                       |                                    |                           | Custody Form (potabl                                                                               |
| Date                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dinte Dinte                                                    |    |  |  |  |      |        |     |              | Metal Hydrid Client ORPs: □ Cr <sup>6*</sup> □ Total Nutrie □ NO <sub>3</sub> Volatili | Custom M B-HWS EC N Hg Nts: TP No <sub>2</sub> (es: Voc | g Met  Metals  FOC  p  NO  NO  C | als  CI   NO  NO  NO  NO  NO  NO  NO  NO  NO  N | O₃/NO₂<br>ISAR<br>□TKN | (Check Applicable)                | □ Yes □ No                                           | runcate or               | Report Guideline on                                  | Indicate One          | Other                    | Objectives (PWQO)                | CCME                 |                                 |                                    | No Regulatory Requirement | ble water intended for human consumption)                                                          |
| Time                                           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Joda 2.10                                                      |    |  |  |  |      |        |     |              | ABNs PAHs Chloro PCBs Organo                                                           | phenols                                                 | Pesti                            | cides                                           | 66                     |                                   | *TAT is exclusive of                                 | Please provide           | <b>OR</b> Date Require                               |                       | 3 Business Days          | Rush TAT (Rush Surcharges Apply) | Regular TAT          | Turnaround Time (TAT) Required: | Notes:                             | Custody Seal Intact:      |                                                                                                    |
| -                                              | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |    |  |  |  | ×    | ×      | ×   | ×            | Sewer SW                                                                               | letals/Ind<br>Use<br>As A                               |                                  |                                                 | te                     |                                   | *TAT is exclusive of weekends and statutory holidays | e prior notification     | <b>OR</b> Date Required (Rush Surcharges May Apply): |                       | 2 Business<br>Days       | s Apply)                         | 5 to 7 Business Days | (TAT) Require                   |                                    | □Yes                      | 537                                                                                                |

Josumen: 10:01: 78-1511.011

Pink Copy - Client | Yellow Copy - AGAT | White Copy - AGAT

.... -

029449

all Issuedifico 18 2016



CLIENT NAME: WSP CANADA INC.

4 Hughson Street South, Suite 300

Hamilton, ON L8N3Z1

(905) 529-4414

ATTENTION TO: Bailey Walters

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T134110

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

WATER ANALYSIS REVIEWED BY: Parvathi Malemath, Data Reviewer

DATE REPORTED: Sep 12, 2016

PAGES (INCLUDING COVER): 8

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |
|--------|
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |
|        |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.

Page 1 of 8



#### Certificate of Analysis

AGAT WORK ORDER: 16T134110

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Bailey Walters SAMPLED BY: Hayden Bellows

|                           |           |           |           |          |              |              | _        | - 9                       |
|---------------------------|-----------|-----------|-----------|----------|--------------|--------------|----------|---------------------------|
|                           |           |           |           | Microb   | iological Aı | nalysis (wat | ter)     |                           |
| DATE RECEIVED: 2016-09-02 |           |           |           |          |              |              |          | DATE REPORTED: 2016-09-12 |
|                           | SA        | AMPLE DES | CRIPTION: | SW1      | SW2          | SW3          | SW100    |                           |
|                           |           | SAM       | PLE TYPE: | Water    | Water        | Water        | Water    |                           |
|                           |           | DATE      | SAMPLED:  | 9/1/2016 | 9/1/2016     | 9/1/2016     | 9/1/2016 |                           |
| Parameter                 | Unit      | G/S       | RDL       | 7823163  | 7823164      | 7823169      | 7823174  |                           |
| Escherichia coli          | CFU/100mL | 100       | 2         | 400      | 46           | 46           | 380      |                           |
|                           |           |           |           |          |              |              |          |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO

7823163-7823174 RDL >1 indicates dilutions of the sample.





Certificate of Analysis

AGAT WORK ORDER: 16T134110

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

SAMPLING SITE:

ATTENTION TO: Bailey Walters SAMPLED BY:Hayden Bellows

|                           |          |             |           | Inorg    | ganic Chemi | stry (Wate | er)      |      |               |              |
|---------------------------|----------|-------------|-----------|----------|-------------|------------|----------|------|---------------|--------------|
| DATE RECEIVED: 2016-09-02 |          |             |           |          |             |            |          |      | DATE REPORTED | : 2016-09-12 |
|                           | 5        | SAMPLE DESC | CRIPTION: | SW1      | SW2         |            | SW3      |      | SW100         |              |
|                           |          | SAME        | PLE TYPE: | Water    | Water       |            | Water    |      | Water         |              |
|                           |          | DATE S      | SAMPLED:  | 9/1/2016 | 9/1/2016    |            | 9/1/2016 |      | 9/1/2016      |              |
| Parameter                 | Unit     | G/S         | RDL       | 7823163  | 7823164     | RDL        | 7823169  | RDL  | 7823174       |              |
| BOD (5)                   | mg/L     |             | 5         | <5       | <5          | 5          | <5       | 5    | <5            |              |
| рН                        | pH Units | 6.5-8.5     | NA        | 8.23     | 8.12        | NA         | 7.92     | NA   | 7.95          |              |
| Total Suspended Solids    | mg/L     |             | 10        | 34       | 17          | 10         | 23       | 10   | 50            |              |
| Chloride                  | mg/L     |             | 0.50      | 193      | 193         | 100        | 203      | 0.50 | 192           |              |
| Nitrate as N              | mg/L     |             | 0.25      | <0.25    | <0.25       | 50         | <50      | 0.25 | <0.25         |              |
| Nitrite as N              | mg/L     |             | 0.25      | <0.25    | <0.25       | 50         | <50      | 0.25 | <0.25         |              |
| Ammonia as N              | mg/L     |             | 0.02      | <0.02    | <0.02       | 0.02       | <0.02    | 0.02 | <0.02         |              |
| Total Phosphorus          | mg/L     | 0.03        | 0.01      | 0.06     | 0.06        | 0.01       | 0.07     | 0.01 | 0.07          |              |
| Total Kjeldahl Nitrogen   | mg/L     |             | 0.10      | 0.59     | 0.54        | 0.10       | 0.51     | 0.10 | 0.60          |              |
|                           |          |             |           |          |             |            |          |      |               |              |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO (mg/L)

7823163-7823174 Elevated RDLs for Anions indicate the degree of dilution prior to analysis in order to keep analytes within the calibration range of the instruments and to reduce matrix interferences.

CHARTERED BY PAYOR VANDER OF THE PAYOR VANDER



#### **Guideline Violation**

AGAT WORK ORDER: 16T134110

PROJECT: 111-53018-00

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Bailey Walters

| SAMPLEID | SAMPLE TITLE | GUIDELINE   | ANALYSIS PACKAGE                 | PARAMETER        | GUIDEVALUE | RESULT |
|----------|--------------|-------------|----------------------------------|------------------|------------|--------|
| 7823163  | SW1          | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 400    |
| 7823163  | SW1          | PWQO (mg/L) | Inorganic Chemistry (Water)      | Total Phosphorus | 0.03       | 0.06   |
| 7823164  | SW2          | PWQO (mg/L) | Inorganic Chemistry (Water)      | Total Phosphorus | 0.03       | 0.06   |
| 7823169  | SW3          | PWQO (mg/L) | Inorganic Chemistry (Water)      | Total Phosphorus | 0.03       | 0.07   |
| 7823174  | SW100        | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 380    |
| 7823174  | SW100        | PWQO (mg/L) | Inorganic Chemistry (Water)      | Total Phosphorus | 0.03       | 0.07   |



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 16T134110 PROJECT: 111-53018-00 ATTENTION TO: Bailey Walters SAMPLING SITE: SAMPLED BY: Hayden Bellows

| Microbiology Analysis  |       |        |        |         |              |                 |                   |                      |          |         |                |          |       |                |
|------------------------|-------|--------|--------|---------|--------------|-----------------|-------------------|----------------------|----------|---------|----------------|----------|-------|----------------|
| RPT Date: Sep 12, 2016 |       | E      |        | REFEREN | NCE MATERIAL | METHOD          | BLANK             | SPIKE                | MAT      | RIX SPI | KE             |          |       |                |
| PARAMETER              | Batch | Sample | Dup #1 | Dup #2  | RPD          | Method<br>Blank | Measured<br>Value | Acceptable<br>Limits | Recovery | Lim     | otable<br>nits | Recovery |       | ptable<br>nits |
|                        |       | Iu     |        | ·       |              |                 | value             | Lower Upper          |          | Lower   | Upper          |          | Lower | Upper          |

Microbiological Analysis (water)

Escherichia coli 7823163 7823163 400 360 10.5% < 1





#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC.

AGAT WORK ORDER: 16T134110 PROJECT: 111-53018-00 ATTENTION TO: Bailey Walters SAMPLING SITE: SAMPLED BY: Hayden Bellows

|                             |              |         |        | Wate    | er Ar | alysi           | is                            |        |          |        |                |          |        |                 |       |
|-----------------------------|--------------|---------|--------|---------|-------|-----------------|-------------------------------|--------|----------|--------|----------------|----------|--------|-----------------|-------|
| RPT Date: Sep 12, 2016      |              |         |        | UPLICAT | E     |                 | REFEREN                       | NCE MA | TERIAL   | METHOD | BLANK          | SPIKE    | MAT    | RIX SPI         | IKE   |
| PARAMETER                   | Batch Sample |         | Dup #1 | Dup #2  | RPD   | Method<br>Blank | Measured Acceptable Limits Re |        | Recovery | Lie    | ptable<br>nits | Recovery | 1 1 11 | eptable<br>mits |       |
|                             |              | la la   |        |         |       |                 | value                         | Lower  | Upper    |        | Lower          | Upper    |        | Lower           | Upper |
| Inorganic Chemistry (Water) | •            |         |        |         |       |                 |                               | •      | •        |        |                |          |        |                 |       |
| BOD (5)                     | 7822593      |         | 124    | 122     | 1.6%  | < 5             | 100%                          | 75%    | 125%     | NA     |                |          | NA     |                 |       |
| pH                          | 7817858      |         | 8.23   | 8.12    | 1.3%  | NA              | 100%                          | 90%    | 110%     | NA     |                |          | NA     |                 |       |
| Total Suspended Solids      | 7823163 7    | 7823163 | 34     | 34      | NA    | < 10            | 104%                          | 80%    | 120%     | NA     |                |          | NA     |                 |       |
| Chloride                    | 7821138      |         | 1940   | 1960    | 1.3%  | < 0.10          | 92%                           | 90%    | 110%     | 108%   | 90%            | 110%     | NA     | 80%             | 120%  |
| Nitrate as N                | 7821138      |         | <2.5   | <2.5    | NA    | < 0.05          | 93%                           | 90%    | 110%     | 104%   | 90%            | 110%     | 105%   | 80%             | 120%  |
| Nitrite as N                | 7821138      |         | <2.5   | <2.5    | NA    | < 0.05          | NA                            | 90%    | 110%     | 94%    | 90%            | 110%     | 101%   | 80%             | 120%  |
| Ammonia as N                | 7823163 7    | 7823163 | <0.02  | < 0.02  | NA    | < 0.02          | 98%                           | 90%    | 110%     | 99%    | 90%            | 110%     | 104%   | 80%             | 120%  |
| Total Phosphorus            | 7823320      |         | 0.02   | 0.02    | NA    | < 0.01          | 91%                           | 90%    | 110%     | 105%   | 90%            | 110%     | 96%    | 70%             | 130%  |
| Total Kjeldahl Nitrogen     | 7820711      |         | 12.0   | 12.1    | 0.8%  | < 0.10          | 106%                          | 80%    | 120%     | 97%    | 80%            | 120%     | 99%    | 70%             | 130%  |

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL (Reporting Limit), the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.





## **Method Summary**

CLIENT NAME: WSP CANADA INC.

PROJECT: 111-53018-00

AGAT WORK ORDER: 16T134110

ATTENTION TO: Bailey Walters

SAMPLED BY:Hayden Bellows

| PARAMETER               | AGAT S.O.P   | LITERATURE REFERENCE                    | ANALYTICAL TECHNIQUE |
|-------------------------|--------------|-----------------------------------------|----------------------|
| Microbiology Analysis   | •            |                                         |                      |
| Escherichia coli        | MIC-93-7010  | EPA 1604                                | Membrane Filtration  |
| Water Analysis          |              |                                         |                      |
| BOD (5)                 | INOR-93-6006 | SM 5210 B                               | DO METER             |
| рН                      | INOR-93-6000 | SM 4500-H+ B                            | PC TITRATE           |
| Total Suspended Solids  | INOR-93-6028 | SM 2540 D                               | BALANCE              |
| Chloride                | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |
| Nitrate as N            | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |
| Nitrite as N            | INOR-93-6004 | SM 4110 B                               | ION CHROMATOGRAPH    |
| Ammonia as N            | INOR-93-6059 | QuikChem 10-107-06-1-J & SM 4500 NH3-F  | LACHAT FIA           |
| Total Phosphorus        | INOR-93-6022 | SM 4500-P B&E                           | SPECTROPHOTOMETER    |
| Total Kjeldahl Nitrogen | INOR-93-6048 | QuikChem 10-107-06-2-I & SM 4500-Norg D | LACHAT FIA           |

Laboratories Ph: 905.

5835 Coopers Avenue

Ph: 905.712.

| sissauga, Ontario L4Z 1Y2                        | Work Order #:         | 16T  | 34110 |         |
|--------------------------------------------------|-----------------------|------|-------|---------|
| .5100 Fax: 905.712.5122<br>webearth agatlabs.com | Cooler Quantity:      | 1.10 |       | and the |
| tended for human consumption)                    | Arrival Temperatures: | 3.5  | 1001  | 2.1     |
| egulatory Requirement                            | Custody Seal Intact:  | □Yes | □No   | □N/     |
|                                                  |                       |      |       |         |

**Laboratory Use Only** 

| Chain of Custody                                           | Recor        | Ш    | If this is a Dri               | nking Water           | sample, pleas    | e use Drinking Water Chain o                                              |                                                 |                |            |                        |                                                                       |                     |                       | 1                     |               |       |         |                           | -                      | 3.9         | Y                        | 1      | 4.1                  |      |
|------------------------------------------------------------|--------------|------|--------------------------------|-----------------------|------------------|---------------------------------------------------------------------------|-------------------------------------------------|----------------|------------|------------------------|-----------------------------------------------------------------------|---------------------|-----------------------|-----------------------|---------------|-------|---------|---------------------------|------------------------|-------------|--------------------------|--------|----------------------|------|
| Report Information:<br>Company:                            | Car          | ade  | 7 ho                           |                       |                  | Regulatory Requ                                                           | uirements:<br>s)                                | □N             | o Re       | egula                  | tory Re                                                               | quirem              | ent                   |                       | Custo         |       | al Inta | act:                      |                        | ]Yes        |                          | □No    |                      | ]N// |
| Contact: Bailey Address: 4 Hog                             | hoon &       | 1.   | ers<br>B, Svita                | 300,H                 | lanilton         | Regulation 153/04  Table Indicate One                                     | ☐ Sewer                                         |                |            | _                      | egulation<br>CME                                                      | 558                 |                       | ш                     | Turna<br>Regu |       |         | Tim:                      |                        |             | <b>Requi</b><br>7 Busine |        |                      |      |
| Phone: Reports to be sent to:  1. Email:  226 - 9  bailey. |              |      |                                |                       |                  | Res/Park Agriculture Soil Texture (Check One)                             | ☐Storm                                          |                |            |                        | rov. Wate<br>bjectives                                                | r Quality<br>(PWQO) |                       |                       | Rush          | TAT   |         |                           | rges App               | ply)        | siness                   |        | 1 Busine             | ess  |
| 1. Email: Bailey. 2. Email:                                | W4 ( 7 E )   |      | uspa                           | 7                     |                  | □Coarse<br>□Fine                                                          | Indicate                                        | One            |            |                        | Indicate                                                              | One                 |                       |                       |               | Day   |         |                           |                        | Days        |                          |        | Day                  |      |
| Project Information:                                       |              |      |                                |                       |                  | Is this submission                                                        |                                                 |                |            |                        | Guideli<br>te of A                                                    | ne on<br>nalysis    |                       |                       |               | OR    | Date    | Requ                      | ired (I                | Rush S      | Surcharg                 | es May | Apply):              |      |
| Project: 111 – 53 Site Location: Sampled By: Hawden        | Bello        |      |                                | -11-                  |                  | ☐ Yes ☐                                                                   | l No                                            | ,              |            | Yes                    |                                                                       | No                  |                       |                       |               |       |         |                           |                        |             | nds and                  |        | sh TAT<br>ry holiday | /S   |
| AGAT Quote #: 60876                                        |              |      | PO:<br>rided, client will be i | billed full price for | anutyais.        | Sample Matrix<br>Legend                                                   | Crvi                                            |                |            |                        | (Chec                                                                 | k Applicati         |                       |                       |               |       |         |                           | 1                      | 0.1         |                          |        |                      |      |
| Invoice Information: Company: Contact: Address: Email:     | 50           |      | Bill                           | To Same: Ye           | es No 🗆          | B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water | Field Filtered - Metals, Hg.<br>(Please Circle) | and Inorganics | Scan       | Hydride Forming Metals | ORPs: DB-HWS DC: DCN  Cre- DEC DFOC DNO <sub>2</sub> /NO <sub>2</sub> | N_ U                | ss: □ voc □ втех □тнм | CCME Fractions 1 to 4 |               | PAHS  | 50000   | Organochlorine Pesticides | TCLP Metals/Inorganics | Use         |                          |        |                      |      |
| Sample Identification                                      | Date<br>Samp |      | Time<br>Sampled                | # of<br>Containers    | Sample<br>Matrix | Comments/<br>Special Instructions                                         | Y/N                                             | Metals         | Metal Scan | Hydrid                 | ORPS:                                                                 | Nutrients:          | Volatiles:            | CCME                  | ABNS          | PAHS  | PCBs    | Organ                     | TCLP                   | Sewer       |                          |        | ner de               |      |
| SW2                                                        | Gept 1       | 2016 | FT                             | 5                     | SW               |                                                                           | 3-2110                                          |                |            | 94                     |                                                                       |                     |                       | 4                     |               | . (   | 101     |                           |                        |             |                          |        |                      | 4    |
| 5W2<br>5W3                                                 |              |      | 10                             |                       |                  |                                                                           |                                                 | -              |            |                        |                                                                       | 0                   |                       | 1                     |               |       |         |                           |                        |             |                          |        |                      |      |
| 50100                                                      | 1            | Te.  | <i>y</i>                       | 1                     | 1                |                                                                           | A                                               |                |            | 99                     |                                                                       |                     |                       |                       |               |       |         |                           |                        |             |                          |        |                      |      |
| Harten .                                                   |              |      | in the                         |                       |                  | 1 1 1                                                                     |                                                 |                |            |                        |                                                                       |                     |                       |                       |               |       |         |                           |                        |             |                          | H      |                      |      |
|                                                            |              |      |                                |                       |                  |                                                                           | 4,01,01                                         |                | -          | 99                     |                                                                       |                     |                       |                       | iah.          |       |         |                           |                        |             |                          |        |                      | - 19 |
|                                                            |              |      |                                |                       |                  |                                                                           | 1923                                            |                |            |                        |                                                                       |                     |                       |                       | DB.           |       |         |                           |                        |             |                          |        |                      |      |
| Samules Railinquished By (Print Name and Sign):            | 1            | /    |                                | Date / /              | Time             | COO on Estimates Received By (1                                           | Print Name half Sign):                          |                |            | R.                     | 2016                                                                  | hal                 | Date                  |                       |               | Битте | 1 1     | 25                        | -                      |             |                          |        |                      |      |
| Simple Relinquished By 4Print Number and Sight:            |              | ne   | 16/09/                         | Date )                | Time             |                                                                           | Print Name and Sign):                           |                |            |                        | 2010                                                                  | 57 K                | 2<br>Date             |                       |               | Time  | ,       |                           |                        | F           | Page                     | of     |                      |      |
| Samples Ratinguished By (Print Name and Sign):             |              |      | 1-110                          | Date                  | Time             | Samples Received By (I                                                    | Print Name and Sign):                           |                |            |                        |                                                                       |                     | Date                  |                       |               | Time  |         |                           | No                     | o: <b>T</b> | 03                       | 38     | 45                   |      |



CLIENT NAME: WSP CANADA INC.

4 Hughson Street South, Suite 300

Hamilton, ON L8N3Z1

(905) 529-4414

ATTENTION TO: Bailey Walters

PROJECT: 111-53018-00 Regional Road 20

AGAT WORK ORDER: 16T151516

MICROBIOLOGY ANALYSIS REVIEWED BY: Inesa Alizarchyk, Inorganic Lab Supervisor

WATER ANALYSIS REVIEWED BY: Elizabeth Polakowska, MSc (Animal Sci), PhD (Agri Sci), Inorganic Lab

Supervisor

DATE REPORTED: Nov 02, 2016

PAGES (INCLUDING COVER): 8

VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *NOTES |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

All samples will be disposed of within 30 days following analysis. Please contact the lab if you require additional sample storage time.

**AGAT** Laboratories (V1)

Page 1 of 8

Member of: Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation.



Certificate of Analysis

AGAT WORK ORDER: 16T151516

PROJECT: 111-53018-00 Regional Road 20

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:Fonthill Sites

ATTENTION TO: Bailey Walters
SAMPLED BY:Craig Leger

|                           |           |           |           | Microb     | iological Aı | nalysis (wat | ter)       |                           |
|---------------------------|-----------|-----------|-----------|------------|--------------|--------------|------------|---------------------------|
| DATE RECEIVED: 2016-10-21 |           |           |           |            |              |              |            | DATE REPORTED: 2016-11-02 |
|                           | S         | AMPLE DES | CRIPTION: | SW1        | SW2          | SW3          | SW100      |                           |
|                           |           | SAM       | PLE TYPE: | Water      | Water        | Water        | Water      |                           |
|                           |           | DATE      | SAMPLED:  | 2016-10-21 | 2016-10-21   | 2016-10-21   | 2016-10-21 |                           |
| Parameter                 | Unit      | G/S       | RDL       | 7946308    | 7946313      | 7946318      | 7946323    |                           |
| Escherichia coli          | CFU/100mL | 100       | 2         | 186        | 250          | 320          | 360        |                           |
|                           |           |           |           |            |              |              |            |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO

7946308-7946323 ND - Not Detected.





Certificate of Analysis

AGAT WORK ORDER: 16T151516

PROJECT: 111-53018-00 Regional Road 20

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC. SAMPLING SITE:Fonthill Sites

ATTENTION TO: Bailey Walters SAMPLED BY:Craig Leger

|                           |          |             |          | Font       | hill Sites - S | SW Package | 9          |                           |
|---------------------------|----------|-------------|----------|------------|----------------|------------|------------|---------------------------|
| DATE RECEIVED: 2016-10-21 |          |             |          |            |                |            |            | DATE REPORTED: 2016-11-02 |
|                           |          | SAMPLE DESC | RIPTION: | SW1        | SW2            | SW3        | SW100      |                           |
|                           |          | SAMPI       | LE TYPE: | Water      | Water          | Water      | Water      |                           |
|                           |          | DATE SA     | AMPLED:  | 2016-10-21 | 2016-10-21     | 2016-10-21 | 2016-10-21 |                           |
| Parameter                 | Unit     | G/S         | RDL      | 7946308    | 7946313        | 7946318    | 7946323    |                           |
| BOD (5)                   | mg/L     |             | 5        | <5         | <5             | <5         | <5         |                           |
| рН                        | pH Units | 6.5-8.5     | NA       | 7.74       | 7.91           | 7.90       | 7.91       |                           |
| Total Suspended Solids    | mg/L     |             | 10       | 15         | 11             | 20         | 17         |                           |
| Chloride                  | mg/L     |             | 0.10     | 49.3       | 49.6           | 49.5       | 49.4       |                           |
| Nitrate as N              | mg/L     |             | 0.05     | <0.05      | <0.05          | <0.05      | <0.05      |                           |
| Nitrite as N              | mg/L     |             | 0.05     | <0.05      | <0.05          | <0.05      | <0.05      |                           |
| Ammonia as N              | mg/L     |             | 0.02     | <0.02      | 0.04           | <0.02      | <0.02      |                           |
| Total Phosphorus          | mg/L     | 0.03        | 0.01     | 0.05       | 0.08           | 0.06       | 0.06       |                           |
| Total Kjeldahl Nitrogen   | mg/L     |             | 0.10     | 0.35       | 0.40           | 0.39       | 0.37       |                           |

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to PWQO (mg/L)

Certified By:

Elizabeth Rolokowska



#### **Guideline Violation**

AGAT WORK ORDER: 16T151516

PROJECT: 111-53018-00 Regional Road 20

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: WSP CANADA INC.

ATTENTION TO: Bailey Walters

| SAMPLEID | SAMPLE TITLE | GUIDELINE   | ANALYSIS PACKAGE                 | PARAMETER        | GUIDEVALUE | RESULT |
|----------|--------------|-------------|----------------------------------|------------------|------------|--------|
| 7946308  | SW1          | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 186    |
| 7946308  | SW1          | PWQO (mg/L) | Fonthill Sites - SW Package      | Total Phosphorus | 0.03       | 0.05   |
| 7946313  | SW2          | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 250    |
| 7946313  | SW2          | PWQO (mg/L) | Fonthill Sites - SW Package      | Total Phosphorus | 0.03       | 0.08   |
| 7946318  | SW3          | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 320    |
| 7946318  | SW3          | PWQO (mg/L) | Fonthill Sites - SW Package      | Total Phosphorus | 0.03       | 0.06   |
| 7946323  | SW100        | PWQO        | Microbiological Analysis (water) | Escherichia coli | 100        | 360    |
| 7946323  | SW100        | PWQO (mg/L) | Fonthill Sites - SW Package      | Total Phosphorus | 0.03       | 0.06   |



#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC. PROJECT: 111-53018-00 Regional Road 20

AGAT WORK ORDER: 16T151516
ATTENTION TO: Bailey Walters
SAMPLED BY:Craig Leger

| Microbiology Analysis  |        |        |        |         |                 |          |         |                |          |        |                |          |     |                |       |
|------------------------|--------|--------|--------|---------|-----------------|----------|---------|----------------|----------|--------|----------------|----------|-----|----------------|-------|
| RPT Date: Nov 02, 2016 |        |        | С      | UPLICAT | E               |          | REFEREN | ICE MA         | ΓERIAL   | METHOD | BLANK          | SPIKE    | MAT | RIX SPII       | KE    |
| PARAMETER              | Sample | Dup #1 | Dup #2 | RPD     | Method<br>Blank | Measured |         | otable<br>nits | Recovery | Lin    | ptable<br>nits | Recovery |     | ptable<br>nits |       |
| . , ,                  | Batch  | ld     |        |         |                 |          | Value   | Lower          | Upper    |        | Lower          | Upper    |     | Lower          | Upper |

Microbiological Analysis (water)

SAMPLING SITE:Fonthill Sites

Escherichia coli 7945342 ND ND NA <1

Comments: ND - Not Detected, NA - % RPD Not Applicable





#### **Quality Assurance**

CLIENT NAME: WSP CANADA INC. PROJECT: 111-53018-00 Regional Road 20

SAMPLING SITE:Fonthill Sites

AGAT WORK ORDER: 16T151516 ATTENTION TO: Bailey Walters SAMPLED BY:Craig Leger

|                             | Water Analysis  |        |         |      |                 |          |        |                |          |        |                |          |         |                |  |
|-----------------------------|-----------------|--------|---------|------|-----------------|----------|--------|----------------|----------|--------|----------------|----------|---------|----------------|--|
| RPT Date: Nov 02, 2016      |                 |        | UPLICAT | E    |                 | REFEREN  | NCE MA | TERIAL         | METHOD   | BLAN   | SPIKE          | MAT      | RIX SPI | KE             |  |
| PARAMETER                   | Batch Sample    | Dup #1 | Dup #2  | RPD  | Method<br>Blank | Measured |        | ptable<br>nits | Recovery | 1 1 11 | ptable<br>nits | Recovery | Lie     | ptable<br>nits |  |
|                             | ld ld           | '      |         |      |                 | Value    | Lower  | Upper          | ]        | Lower  | Upper          |          |         | Upper          |  |
| Fonthill Sites - SW Package | ,               |        |         |      | ,               |          |        |                |          |        |                |          |         |                |  |
| BOD (5)                     | 7946621         | <5     | <5      | NA   | < 5             | 101%     | 75%    | 125%           | NA       |        |                | NA       |         |                |  |
| pH                          | 7939755         | 8.26   | 8.18    | 1.0% | NA              | 102%     | 90%    | 110%           | NA       |        |                | NA       |         |                |  |
| Total Suspended Solids      | 7949073         | 168    | 166     | 1.2% | < 10            | 98%      | 80%    | 120%           | NA       |        |                | NA       |         |                |  |
| Chloride                    | 7947145         | 30.3   | 30.4    | 0.3% | < 0.10          | 94%      | 90%    | 110%           | 108%     | 90%    | 110%           | 101%     | 80%     | 120%           |  |
| Nitrate as N                | 7947145         | <0.25  | <0.25   | NA   | < 0.05          | 102%     | 90%    | 110%           | 110%     | 90%    | 110%           | 107%     | 80%     | 120%           |  |
| Nitrite as N                | 7947145         | <0.25  | <0.25   | NA   | < 0.05          | NA       | 90%    | 110%           | 102%     | 90%    | 110%           | 105%     | 80%     | 120%           |  |
| Ammonia as N                | 7945752         | 0.18   | 0.17    | 5.7% | < 0.02          | 95%      | 90%    | 110%           | 103%     | 90%    | 110%           | 94%      | 80%     | 120%           |  |
| Total Phosphorus            | 7944419         | 0.04   | 0.04    | NA   | < 0.01          | 102%     | 90%    | 110%           | 105%     | 90%    | 110%           | 90%      | 70%     | 130%           |  |
| Total Kjeldahl Nitrogen     | 7946318 7946318 | 0.39   | 0.38    | NA   | < 0.10          | 102%     | 80%    | 120%           | 100%     | 80%    | 120%           | 102%     | 70%     | 130%           |  |

Comments: NA signifies Not Applicable.

Duplicate Qualifier: As the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL.

Fonthill Sites - SW Package

Total Kjeldahl Nitrogen 7946318 7946318 0.39 0.38 NA < 0.10 100% 80% 120% 100% 80% 120% NA 70% 130%

Certified By:

Elizabeth Rolakowska



## **Method Summary**

CLIENT NAME: WSP CANADA INC. PROJECT: 111-53018-00 Regional Road 20

SAMPLING SITE:Fonthill Sites

AGAT WORK ORDER: 16T151516
ATTENTION TO: Bailey Walters
SAMPLED BY:Craig Leger

|                         |                                                              | 5 <u>225 2 6. a.g</u> 20go.               |                      |  |  |  |  |  |  |
|-------------------------|--------------------------------------------------------------|-------------------------------------------|----------------------|--|--|--|--|--|--|
| PARAMETER               | AGAT S.O.P                                                   | LITERATURE REFERENCE                      | ANALYTICAL TECHNIQUE |  |  |  |  |  |  |
| Microbiology Analysis   |                                                              |                                           |                      |  |  |  |  |  |  |
| Escherichia coli        | MIC-93-7010                                                  | EPA 1604                                  | Membrane Filtration  |  |  |  |  |  |  |
| Water Analysis          |                                                              |                                           |                      |  |  |  |  |  |  |
| BOD (5)                 | INOR-93-6006                                                 | SM 5210 B                                 | DO METER             |  |  |  |  |  |  |
| рН                      | INOR-93-6000                                                 | SM 4500-H+ B                              | PC TITRATE           |  |  |  |  |  |  |
| Total Suspended Solids  | INOR-93-6028                                                 | SM 2540 D                                 | BALANCE              |  |  |  |  |  |  |
| Chloride                | INOR-93-6004                                                 | SM 4110 B                                 | ION CHROMATOGRAPH    |  |  |  |  |  |  |
| Nitrate as N            | INOR-93-6004                                                 | SM 4110 B                                 | ION CHROMATOGRAPH    |  |  |  |  |  |  |
| Nitrite as N            | INOR-93-6004                                                 | SM 4110 B                                 | ION CHROMATOGRAPH    |  |  |  |  |  |  |
| Ammonia as N            | INOR-93-6059                                                 | QuikChem 10-107-06-1-J & SM 4500<br>NH3-F | LACHAT FIA           |  |  |  |  |  |  |
| Total Phosphorus        | INOR-93-6022                                                 | SM 4500-P B&E                             | SPECTROPHOTOMETER    |  |  |  |  |  |  |
| Total Kjeldahl Nitrogen | itrogen INOR-93-6048 QuikChem 10-107-06-2-I & SM 4500-Norg D |                                           | LACHAT FIA           |  |  |  |  |  |  |





5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2

**Laboratory Use Only** Work Order #: 16T 151516

| Chain of Custody F                                                                                                                                                                                      | Record   |     | nking Water                                                                                                                     | sample, pleas                                      | e use Drinking Water Chain of                                           | f Custody Form (p                                  | otable wa                                   | ter inte                                                                                                                                            | endad-fe    | rhuman co                          | nsumption                                                                                                                      | )     |        | er Qua<br>al Tem          | inuity:<br>iperati     | ıres:     | 4        | 2                                     | 41 | 13.9 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------------------------|------------------------|-----------|----------|---------------------------------------|----|------|
| Report Information: Company:                                                                                                                                                                            |          |     |                                                                                                                                 | Regulatory Requirements: No Regulatory Requirement |                                                                         |                                                    |                                             |                                                                                                                                                     | nt          | Custody Seal Intact: Yes No Notes: |                                                                                                                                |       |        |                           |                        |           |          |                                       |    |      |
| Contact:  Address:  Phone: Reports to be sent to: 1. Email:  2. Email:  Project Information: Project: Site Location: Sampled By: AGAT Quote #:  Invoice Information:  Company: Contact: Address: Email: |          |     | Regulation 153/04                                                                                                               |                                                    |                                                                         | CCME  Prov. Water Quality Objectives (PWQO)  Other |                                             |                                                                                                                                                     |             |                                    | Turnaround Time (TAT) Required:  Regular TAT 5 to 7 Business Days  Rush TAT (Rush Surcharges Apply)  3 Business Days Days Days |       |        |                           |                        |           |          |                                       |    |      |
|                                                                                                                                                                                                         |          |     | Is this submission for a Record of Site Condition?  Yes PNo                                                                     |                                                    | on? Certificate of Analysis                                             |                                                    |                                             | OR Date Required (Rush Surcharges May Apply):  Please provide prior notification for rush TAT  *TAT is exclusive of weekends and statutory holidays |             |                                    |                                                                                                                                |       |        |                           |                        |           |          |                                       |    |      |
|                                                                                                                                                                                                         |          |     | Sample Matrix Legend  B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water  Comments/ Special Instructions | Field Fitered - Metals, Hg, GWI (Please Circle)    | Metals and Inorganics                                                   | can                                                | Hydride Forming Metals Client Custom Metals | F □CN:<br>□NO√NO2<br>H□SAR                                                                                                                          | OTP CINH, C | □ voc □ BTEX □ THM                 |                                                                                                                                | cioco | Scions | Organochlorine Pesticides | TCLP Metals/Inorganics | Per Bucke |          |                                       |    |      |
| Sample Identification  Date Time # of Sample Sampled Sampled Containers Matrix                                                                                                                          |          | Y/N |                                                                                                                                 | Metals                                             | Metal Scan                                                              | Hydride<br>Client C                                | ORPs: Cre+ C Total N                        | Nutrient                                                                                                                                            | Volatiles:  | ABNs                               | PAHs                                                                                                                           | PCBs  | Organo | TCLP Me                   | Sewer Use              |           |          |                                       |    |      |
| (W)<br>(W2<br>(W3<br>(W3)                                                                                                                                                                               | 21 00+16 |     | 1                                                                                                                               | 5W                                                 |                                                                         | 1                                                  |                                             |                                                                                                                                                     |             |                                    |                                                                                                                                |       |        |                           |                        |           |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |    |      |
|                                                                                                                                                                                                         |          |     |                                                                                                                                 |                                                    | KV                                                                      | 2                                                  |                                             |                                                                                                                                                     |             |                                    |                                                                                                                                |       |        |                           |                        |           |          |                                       |    |      |
| Samples Refinquished By (Print Name and Sign): Samples Refinquished By (Print Name and Sign): Samples Refinquished By (Print Name and Sign):                                                            | il.      |     | Date Date                                                                                                                       | Time Time                                          | Z: 15 Jambos at Med By () Jambios Received By () Jambios Received By () | Print Name and Sign);                              | E                                           | Z8                                                                                                                                                  | KA          | nô                                 | Da                                                                                                                             |       | 6      | Time                      |                        | >0        | f<br>N°: | Page_                                 | of | 178  |

## APPENDIX

# CLIMATE DATA

Data tables are not included in this report. Data tables can be provided upon request.

Figure D-1
Daily Temperature vs Time
Environment Canada Climate Data



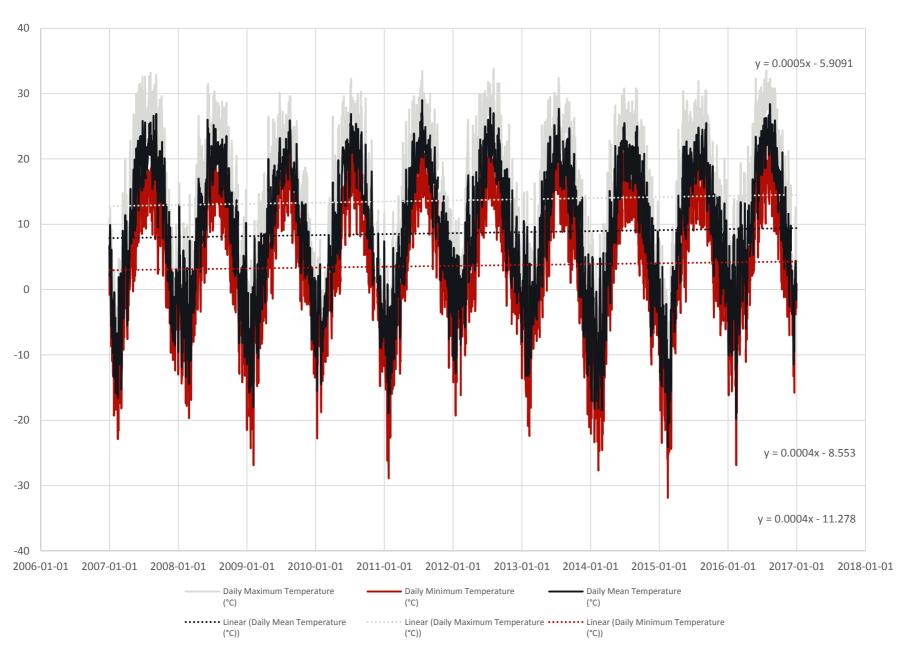



Figure D-2
Daily Precipitation vs Time
Environment Canada Climate Data



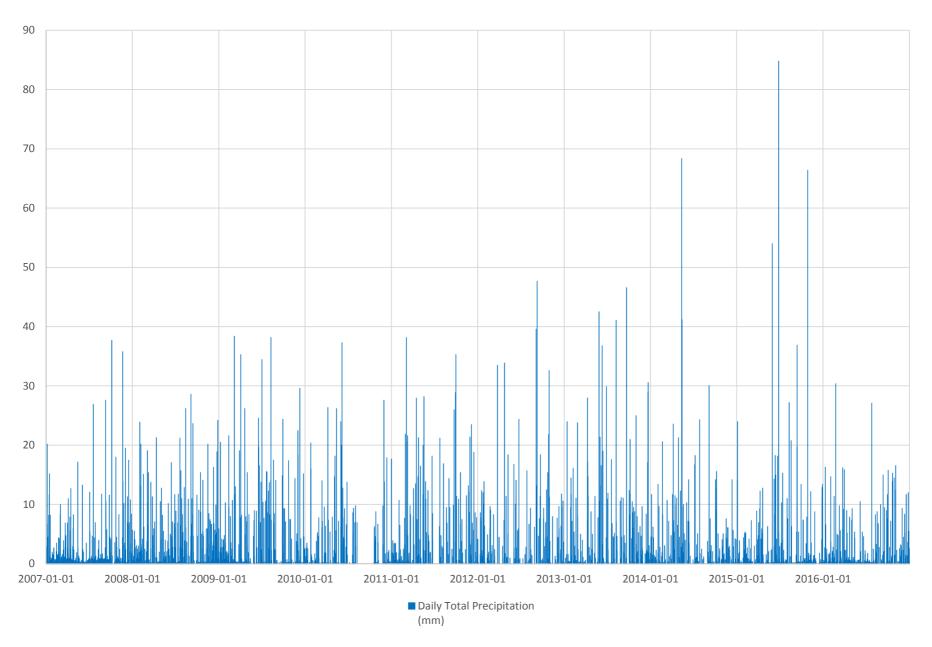



Figure D-3
Hourly Precipitation vs Time
Regional Municipality of Niagara Pelham Climate Station



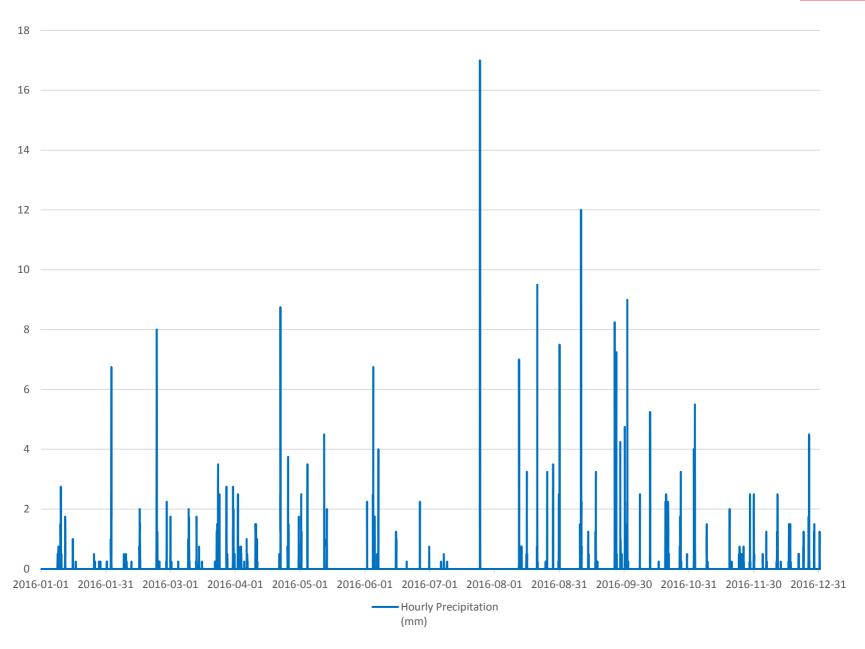
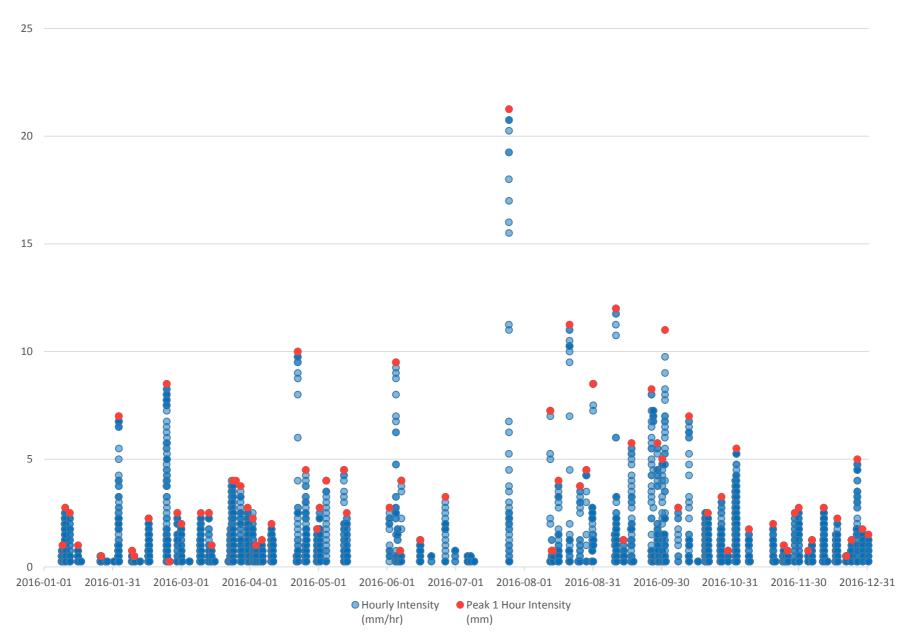




Figure D-4
Hourly Precip Intensity vs Time
Regional Municipality of Niagara Pelham Climate Station



